Abstract:
A method and apparatus for testing latch based random access memory includes steps of generating a scan enable signal for testing latch based random access memory and generating a scan clock signal for testing the latch based random access memory wherein the scan clock signal has a first scan clock period for a shift cycle and a second scan clock period for a capture cycle.
Abstract:
A pulse to static converter for SRAM in which the converter latch is comprised of two cross-coupled, complementary, FET pairs. The FETs of each pair are coupled drain to drain between a positive voltage source and ground. The output state of SRAM sense amplifier is coupled as an input to the grates of one FET pair and the state established by this input is latched via the cross coupling with the other FET pair.
Abstract:
In order to test the memory access signal connections between a data processing circuit, such as a processor core 2, and a memory 4, a subset of memory access signal connections 8 are provided with associated scan chain cells 10 so that they may be directly tested. The remainder memory access signal connections 12 which are common to all the expected configurations of the memory 4 are tested by being driven by the processor core 2 itself with data being passed through the memory and captured back within the processor core 2 for checking.
Abstract:
A system and method for protecting the values stored in a BISR repair block and, optionally, debugging the BISR repair logic without altering normal test flow is implemented by a circuit including a plurality of soft latches within the BISR repair block, the soft latches being coupled together to form a BISR scan chain for holding BISR repair information. A chip level scan enable signal and a scan hold control signal cooperate to control connection of the BISR scan chain to other scan chains during a scan test, so that the BSR repair information is held within the soft latches. A diagnose enable signal cooperating with the chip level scan enable signal and the scan hold control signal for enabling debugging of logic connecting the BISR scan chains.
Abstract:
A semiconductor system includes a plurality of semiconductor chips, a first group of wirings, a second group of wirings and a connection rearrange wiring section. The first group of wirings interconnect the plurality of semiconductor chips. The second group of wirings are used for redundancy and interconnect the plurality of semiconductor chips. The connection rearrange wiring section includes a connection test circuit and connection rearrange circuit. The connection test circuit makes a test for connection between the plurality of semiconductor chips by means of the first group of wirings. The connection rearrange circuit makes unusable a wiring of the first group in which poor connection occurs and rearranges the connection between the semiconductor chips by use of the wiring of the second group when the poor connection is detected in the wiring of the first group by the connection test circuit.
Abstract:
A system and method enhance observability of IC failures during burn-in tests. Scan automatic test pattern generation and memory built-in self-test patterns are monitored during the burn-in tests to provide a mechanism for observing selective scan chain outputs and memory BIST status outputs.
Abstract:
A latch based random access memory includes an input data register; an input data buffer coupled to the input data register; a latch array coupled to the input data buffer; and a latch array bypass multiplexer for selecting one of the input data buffer and the latch array in response to a memory scan mode signal to generate a first data output of the latch based random access memory from the input data buffer during logic scan testing and a second data output of the latch based random access memory from the latch array during memory scan testing.
Abstract:
A circuit and method for selectively outputting internal information in a semiconductor memory device comprising a test circuit such as a JTAG test circuit. The internal information is selectively output through a test pin of the test circuit during a normal operation mode of the semiconductor memory. The internal information of a semiconductor memory chip is output as either a digital or analog signal without having to add additional package pins.
Abstract:
The outputs of selectors 230 to 23N are respectively connected to the data inputs DI0 to DIN of a RAM 10A. One inputs of selectors 540 to 54N are respectively connected to the data outputs DO0 to DON of the RAM 10A, the other inputs are connected to corresponding outputs of the selectors 230 to 23N. The outputs of the selectors 540 to 54N are connected to data inputs D of respective scan flip-flops 520 to 52N. Not in a RAM test mode, data input lines 210 to 21N are selected by the selectors 230 to 23N to provide to the data inputs DI0 to DIN of the RAM 10A and to the scan flip-flops 520 to 52N through the selectors 540 to 54N, respectively.
Abstract:
A circuit testing approach involves configurable switch control for automatically detecting and routing test signals along a plurality of test circuit paths. According to an example embodiment of the present invention, a configurator arrangement (100) controls a configured circuit (110) by monitoring test signals and, in response, setting switches (115) on the configured circuit. In one implementation, the configurator circuit arrangement is programmed to automatically detect test signals (i.e., digital and/or JTAG test signals) and to control switches (115) for routing test data along a test circuit path on the configured circuit and/or between the configured circuit and an external circuit. With this approach, manual switching for routing the test signals is not necessary, which has been found to be useful in applications where access to the circuit paths for switching is difficult or impossible. In another implementation, a communications link (130) passes signals between the configurator circuit arrangement (100) and a user interface (140), including control signals from the user interface and data from the configured circuit (110). The configurator circuit arrangement (100) is further controllable (i.e., manually) or programmable by signals received from the user interface (140).