Abstract:
Tape heads and controllers for controlling such heads in a tape drive are described. A controller may determine a first parameter corresponding to the similarity between data read by a first pair of read elements of a head, a second parameter corresponding to the similarity between data read by another pair of read elements having one read element in common with the first pair, and a position of the head with respect to a data track based upon a relationship between the first and second parameters. The controller may adjust the head to a proper lateral position based upon the determined position.
Abstract:
A magnetic recording and reproduction method includes the steps of recording a plurality of tracks which make a unit for a signal process for data detection by means of a recording head on a magnetic recording medium, and reproducing signals of the plural tracks by a plural number of times in different positional relationships to the tracks by means of a reproduction head which can reproduce a signal across the plural tracks of the magnetic recording medium, collecting the reproduction signals in the unit and performing a signal process for the unit to produce reproduction signals for the individual tracks.
Abstract:
Tape heads and controllers for controlling such heads in a tape drive are described. A controller may determine a first parameter corresponding to the similarity between data read by a first pair of read elements of a head, a second parameter corresponding to the similarity between data read by another pair of read elements having one read element in common with the first pair, and a position of the head with respect to a data track based upon a relationship between the first and second parameters. The controller may adjust the head to a proper lateral position based upon the determined position.
Abstract:
In general, the invention provides a magnetic head device and linear tape drive that widen the high frequency side of the servo range. In particular, the invention provides a magnetic head device comprising a magnetic head chip with multiple magnetic elements arranged for recording or playback of multiple tracks and a fine positioning structure that uses a bimodal construction that may widen the high frequency side of the servo range by increasing the resonant frequency of the magnetic head chip including the tracking structure and lowering the Q value of the resonance point. In addition, the invention includes a damping structure suitable for the fine positioning structure that improves high speed response by widening the range in which the magnetic head device can be used for a servo. The magnetic head device may use a linear tape drive method.
Abstract:
A magnetic tape drive dynamically adjusts a transport rate of tape (32) in accordance with a host data rate. The host data rate is assessed in relation to a data fill level of a buffer (116). A controller (130) of the drive compares the data fill level of the buffer with a buffer normalization value and generates an adjustment value for adjusting a signal indicative of the desired linear velocity of the tape. In one embodiment, the controller also dynamically changes the buffer normalization value to reflect e.g., historical performance of the host. In another embodiment the controller adjusts the transport rate when a head (100) is within a predetermined distance of a boundary point whereat the head must change tracks.
Abstract:
For clock extraction (Cl.sub.n) from n digital signals read from each of n tracks (T.sub.a.1 to T.sub.a.n), there are provided n phase-locked loops (13,n). Voltage-controlled oscillator (21) is common to the n phase-locked loops. Each phase-locked loop further includes a phase-shifter unit (25.n) having an input coupled to the output of the voltage-controlled oscillator (21) and an output coupled to the second input of the phase comparator (17,n) in the loop. The phase shift in the phase-shifter unit (25.n) is controlled under the influence of a control signal which is derived by a control signal generator (26.n) and applied to a control signal input (29) of the phase-shifter unit (25.n). The control signal generator unit (26.n) is an integrating element.
Abstract:
Disclosed are a magnetic recording and reproduction apparatus for a data processing unit, which includes a plurality of magnetic heads formed integrally by a thin-film forming technology, and a magnetic tape. A magnetic tape has a plurality of recording tracks corresponding to a plurality of independent data. The recording tracks are arranged in parallel to a moving direction of the magnetic tape and share the same starting position. A plurality of magnetic heads are arranged in parallel to a width direction of the magnetic tape to correspond to the recording tracks in a one-to-one correspondence, and are fixed at the starting position of the recording tracks. The magnetic tape is moved in a direction in which the starting position is away from the magnetic heads for data recording onto the magnetic tape and for data reproduction from the magnetic tape. Further, the magnetic tape is controlled to automatically and immediately move in an opposite direction to the previous direction until the starting position reaches the position of the magnetic heads in response to each of the end of the data recording and the end of the data reproduction. Thus, the starting position of the recording tracks is the same, i.e. at the position of magnetic heads upon the start of data recording and the start of data reproduction.
Abstract:
A method according to one embodiment includes forming at least two write transducers for writing to a magnetic medium, the at least two write transducers being positioned adjacent each other and aligned along a line; and forming a shield structure having shields adjacent at least three sides of each of the at least two write transducers, the shields being formed of a magnetically permeable material.
Abstract:
An apparatus according to one embodiment includes a module having a substrate, read and write transducers positioned towards a media facing side of the module, and a closure. The write transducers include write poles having media facing sides with negative, zero or near-zero recession from a plane extending along the media facing side of a substrate of the module. The read transducers each have two shields. Media facing sides of the two shields are recessed a same amount from the plane, and are more recessed from the plane than the write poles.