Abstract:
The present disclosure discloses a magnetic head, a head gimbal assembly, a hard disk drive, and a method for processing a magnetic head. The method comprises irradiating at a fixed point proximal to the read/write part with a laser irradiation device until the read head and the write head are thermally expanded; orientating air bearing surfaces of a plurality of magnetic heads forming a magnetic strip toward a lapping surface of a lapping device after laser irradiation, holding the air bearing surfaces in place, lapping with the lapping device until the air bearing surfaces are coplanar; and disassembling the magnetic strip to obtain a lapped magnetic head. Through laser heating induced compensation, the heights of lapped read head and write head of the magnetic head meet their respective target values, ensuring the normal reading and writing of the storage medium of the magnetic disk.
Abstract:
A method of transferring data of one or more rotatable data storage devices includes but is not limited to rotating the at least one rotatable data storage device; transferring the data between a plurality of stationary data transfer heads and the one or more rotatable data storage devices; and using one or more computer programs to determine which of the plurality of stationary data transfer heads are to be used to transfer a first portion of the data between the plurality of stationary data transfer heads and the one or more rotatable data storage devices and the direction in which the first portion of the data is to be transferred. In addition to the foregoing, other method aspects are described in the claims, drawings, and text forming a part of the present application. Other methods and apparatuses are also disclosed.
Abstract:
An information storage apparatus comprises a one or more storage media 168 which include a plurality of information tracks. Each storage medium 168 has a head assembly 170 having a substantially planar surface and a plurality of read/write heads positioned in registry with said information tracks. The read/write heads are arranged substantially in the plane of the planar surface. The information storage medium 168 and the head assembly 170 are arranged in mutually sliding abutment such that the read/write heads are substantially in sliding contact with the outer surface of the information storage medium in use. In another aspect an information storage and retrieval apparatus comprises an information storage medium 168 comprising an information storage area, and an array 170 of information read and/or write heads. The information storage medium 168 and array of heads 170 are arranged to be oscillated with respect to each other in use such that each region of the information storage area is aligned with at least one of the read/write heads during the oscillation.
Abstract:
A ferromagnetic material can be formed in a very small size on the order of an atomic size and is capable of being stably magnetized. The ferromagnetic material comprises basic unit structures each consisting of a first atom (11), a second atom (12) of the same kind as the first atom (11), and a third atom (or atomic group) (13) of the same kind as the first atom (11) or of a kind different from that of the first atom (11). In each of the basic unit structures, the atoms are arranged on a surface of a substrate so that a chemical bond (14) is formed between the first atom or molecule and the third atom or molecule, a chemical bond (14) is formed between the second atom or molecule and the third atom or molecule, and a chemical bond or an electron path (15) not passing the third atom is formed between the first and the second atom or molecule, wherein said third atoms or molecules consist of As atoms.
Abstract:
A magnetic data storage fixed hard disk drive using stationary Microhead Array Chips in place of conventional Flying-Heads and Rotary Voice-Coil Actuators or other Servo-Tracking mechanisms. Every Microhead Array Chip has a minimum of one thousand or maximum of four billion individual and addressable microhead read and write data-transducers built into it. The hard disk drive unit assembly that uses the Microhead Array Chip approach will have within its assembly as few as two or as many as twenty-eight installed Microhead Array Chips. The Microhead Array Chip hard disk drive unit assemblies will have at least one storage disk-platter with two disk-platter data-surfaces containing a multiplicity of concentric data-tracks that rotates at a substantially constant angular velocity. While Microhead Array Chips are made stationary by specially designed circuit boards, that positions a Microhead Array Chip over each of two data-surfaces of every disk-platter within the hard disk drive assembly. The total number of microheads within a stationary positioned Microhead Array Chip's Microhead Array is what determines the total number of available tracks on and across a data-platter's data-surface (i.e., 65,000 microheads would equal 65,000 cylinder/tracks).
Abstract:
A method and a system for fixing and positioning a headstack (100, 200, 300, 400) on a headstack tester by utilizing a vacuum chuck (105, 106, 208, 310). The vacuum chuck engages headstack. This engagement determines the exact position of the magnetic heads (24a, 24b . . . ) supported by the headstack with respect to the working surfaces (S1, S2, S3) of magnetic disks ((111a, 111b, 111c) of the disk pack of the tester.
Abstract:
A high density fixed head disk drive is shown. Small track width and small inter-track spacing is accomplished by small head-to-media distances, which are maintained by fabricating both read/write heads and demultiplexer circuitry on a single planer substrate constituting a head mount disk. Spacing between the head mount disk and media disk is controlled by placing the head mount disk on the periphery of annular housings that are slightly thicker than the media disk and thus controlling the spacing there between. Close inter-track spacing is provided by angularly offsetting radial groups of read/write heads on the head mount disk. Construction of a head mount disk and media disk of the same material provides physical thermal tracking thus minimizing track misalignment problems due to temperature variations. Additionally, shorter duration writing pulses are employed on outer tracks to increase information density per unit area of the media disk.In an alternate embodiment, head-to-media separation is eliminated by fabricating heads that extend to make contact with an opposing media disk. Contact is maintained with the media disk by angling the lash heads in the direction of media disk travel and flexing them against the same.
Abstract:
The thermo-magnetic head disclosed has a gap with magnetic properties at ambient temperature. This gap is heated above its Curie temperature in order to make it lose its magnetic property. The pole pieces on either side of the gap form electrical conductors which convey the heating current of this gap.
Abstract:
A thin-film magnetic head for writing information in and reading information from a track of a magnetic recording medium in which the head comprises a magnetically permeable yoke having two limbs between which a writing/reading gap is formed. In a construction in which the limbs of the yoke overlap each other at the area of the writing/reading gap, they are bridged by a magneto-resistive reading element at a location remote from the reading/writing gap. A conductor is provided in some forms of the invention which extends intermediate the laterally overlapping limbs. This conductor is utilized for producing a writing flux in the magnetic yoke. Another conductor may be provided which extends through a window or opening in the yoke, which is remote from the reading/writing gap. This other conductor is utilized during writing operation to maximize efficiency.
Abstract:
This disclosure deals with a novel combination of magnetic tape cartridge with read or record head which permits magnetic coupling through the wall of the cartridge with no loss in the quality of the aperture of the head and with only a negligible loss in amplitude of the signal, as compared with the operation of conventional read-record heads, but with the distinct advantage that the cartridge, including drive and pinch rollers, is completely sealed against the outside environment.