Abstract:
Improved/efficient fiber laser systems are provided for medical/cosmetic applications, comprising at least one pump source, optically coupled with at least one fiber laser. The fiber laser comprises an irregularly-shaped single-, double- or multiple-clad fiber of unconventional structure and geometry, and means for partially/completely reflecting the pump radiation, such as Bragg gratings. The fiber laser system further comprises at least one fiber optic delivery device optically coupled with the pump source, with the irregularly-shaped single-, double- or multiple-clad fiber laser, or with both, to convey laser radiation to a treatment site. The fiber optic delivery device comprises one or more waveguides, preferably optical fibers. The irregularly-shaped fiber laser and waveguides of the fiber optic delivery device have the same or different tip configurations to perform the treatment according to therapeutic needs. In a preferred embodiment, the fiber laser treatment system operating at 915±30 nm, 975±30 nm and/or 1550±40, comprises control means to select delivery of one, two or three output laser beams, and regulates their respective output powers.
Abstract:
Devices and methods are provided for performing an ablation procedure on tissue with flow monitoring using flow sensors. The devices include a catheter, and at least one flow sensor disposed on the catheter, and a component for applying the ablation procedure. An assessment module provides an indication of the efficacy of the ablation procedure based on the flow measurement from the flow sensor.
Abstract:
A method of delivering light energy to target matter in a mammalian body is described. The method may include inserting at least a portion of a catheter into a patient's vasculature, wherein the catheter comprises an open distal tip, a lumen extending proximally from the open distal tip, and at least one optical fiber within the lumen, wherein the at least one optical fiber has a distal end. The method may include flowing a liquid light guide medium through the open-ended catheter tip, wherein the liquid light guide medium flows beyond the distal end of the at least one optical fiber, wherein the liquid light guide medium comprises a magnesium chloride solution having an ion concentration that is isotonic with blood and tissue. The method may include forming a fluid optical channel with the liquid light guide medium between the catheter and the target matter. Other methods are described.
Abstract:
A device configured to cut hair using laser light includes a handle portion and a shaving portion. The handle portion includes a battery and a laser light source. The laser light source is coupled to and configured to receive power from the battery. The laser light source is also configured to generate laser light having a wavelength selected to target a predetermined chromophore to effectively cut a hair shaft. The shaving portion includes a support and a single fiber optic supported by the support. The fiber optic has a proximal end, a distal end, an outer wall, and a cutting region positioned towards the distal end and extending along a portion of the side wall. The fiber optic is positioned to receive the laser light from the laser light source at the proximal end, conduct the laser light from the proximal end toward the distal end, and emit the light out of the cutting region and toward hair when the cutting region is brought in contact with the hair.
Abstract:
A device and methods of use thereof are disclosed herein for a biodegradable optical fiber and a method of producing a device including a biodegradable optical fiber. A device is disclosed that includes: a biodegradable optical fiber including; a biodegradable optically functional inner fiber including an optically-transmitting cladding in contact with and surrounding an optically-transmitting core, wherein the inner fiber is biodegradable on a first time scale; and an outer layer in contact with and surrounding the optically-transmitting cladding, wherein the outer layer is biodegradable on a controllably-defined delayed time scale, and the controllably-defined delayed time scale is of greater duration than the first time scale.
Abstract:
A multiwavelength laser-based intense light source is described having applications in incision, excision and ablation of soft tissues with minimal collateral tissue damage. The light source combines the output of a plurality of relatively low power laser sources, emitting radiation in the region of the electromagnetic spectrum bounded by approximately 350 nm to 450 nm, where the combined output may be coupled into a single fiber optic energy delivery device: a standard surgical probe. Spectral and spatial beam combining are used to produce an incoherent light source with relatively low average power at any given wavelength, but with high total power and superior M2 beam quality, targeting multiple chromophores in target tissue and tissue breakdown product chromophores for consistently high and target absorption without indiscriminant char interference throughout a surgical procedure.
Abstract:
Disclosed are a laser device and method for dermocosmetic, medical or aesthetic treatments. The device comprises: a laser system comprising a lamp-pumped source; an optical fiber transporting the laser beam produced by said source; a handpiece or a scanner connected to said optical fiber, comprising a lens and mirror system projecting the image of the laser beam onto the area to be treated; wherein said optical fibre has a rectangular section and said image is rectangular.
Abstract:
An energy delivery device for administering tissue therapy includes a housing and an elongated body extending distally from the housing. The energy delivery device also includes a first lumen extending a length of the elongated body. The first lumen is configured to facilitate application of thermal treatment to a target region of tissue. A second lumen extends the length of the elongated body and is configured to facilitate infusion of hydrogels embedded with stem cells to the target region of tissue thermally treated. The energy delivery device further includes a third lumen configured to facilitate delivery of ultraviolet (UV) light to the target region of tissue for curing the hydrogels. A distal end of the elongated body is positioned in proximity to the target region of tissue for enabling successive introduction of the thermal treatment, infusion of the hydrogels, and delivery of the UV light.
Abstract:
A catheter device provides a balloon structure and a side-firing laser lumen within the balloon to create lesions in the pulmonary vein (PV) in the treatment of atrial fibrillation. Mounted on the balloon so as to contact the PV when the balloon is inflated are one or more electrodes which may be used in a measurement mode, a treatment mode, or both.
Abstract:
A laser-based method and system for selectively processing target tissue material in a patient and optical catheter assembly for use therein are provided. The system includes a laser subsystem for generating an output laser beam. The system further includes a catheter assembly including at least one optical fiber having a proximal end coupled to the laser subsystem for guiding the output laser beam along a propagation path. The beam has optical and temporal properties and a predetermined selected wavelength. The catheter assembly is sized to extend through an opening in a first part of the patient and to a tissue material processing site within the patient. The catheter assembly includes a beam delivery and focusing subsystem which has an adjustable focal distance and disposed in the propagation path and that accepts the output laser beam and adjustably positions the beam into at least one focused spot on the target tissue material disposed within a second part of the patient at the site based on distance to the target tissue material from a predetermined point on the propagation path at the site for a duration sufficient to allow laser energy to be absorbed by the target tissue material and converted to heat to produce a desired physical change in the target tissue material without causing undesirable changes to adjacent non-target material disposed within the second part of the patient. The target tissue material is characterized by an absorptive coefficient. The predetermined wavelength is selected to achieve a penetration depth into the second part of the patient of approximately one millimeter or more.