Abstract:
A variable valve actuation system to actuate and control the seating velocity of an internal combustion engine valve is disclosed. The system comprises: a housing having a bore formed therein; an outer piston slidably disposed in the bore, the outer piston having an orifice formed therein; a catch piston slidably disposed in the outer piston; and an cone-shaped extension extending from the inner piston, wherein the cone-shaped extension is adapted to provide a variable flow area through the outer piston orifice to provide improved engine valve seating.
Abstract:
Methods and systems are disclosed for forcing at least some members of a communication group to join a new group call when they are participating in an another group call to a different communication group. A wireless communication device that seeks to initiate the new group call transmits a request-to-transmit (RTT) on a reverse channel to initiate the new group call. This way, at least some of group members participating in the other group call can be allowed to join the new group call. The recipients of the RTT can then switch from a primary channel on which the other group call is taking place to an alternative channel to join the new group call. In one implemenation, the disclosed embodiments can be applied to a two-way wireless communication system that employs a TDMA channel access scheme.
Abstract:
A variable valve actuation system to actuate and control the seating velocity of an internal combustion engine valve is disclosed. The system comprises: a housing having a bore formed therein; an outer piston slidably disposed in the bore, said outer piston having an internal hydraulic passage, an internal chamber defined by an outer piston side wall, and an internal orifice connecting the internal hydraulic passage and the internal chamber; a catch piston slidably disposed in the outer piston; and a cone-shaped extension extending from the inner piston, wherein the cone-shaped extension is adapted to provide a variable flow area through the outer piston orifice to provide improved engine valve seating.
Abstract:
Apparatus and method are disclosed for converting an internal combustion engine from a normal engine operation (20) to an engine braking operation (10). The engine includes exhaust valve train components comprising at least one exhaust valve (300) and at least one cam (230) for cyclically opening and closing the at least one exhaust valve (300). The apparatus comprises actuation means (100) having at least one component integrated into at least one of the exhaust valve train components, such as a rocker arm (210) or a valve bridge (400). The actuation means (100) has an inoperative position and an operative position. In the inoperative position, the actuation means (100) is retracted and the small braking cam lobes (232 & 233) are skipped to generate a main valve lift profile (220m) for the normal engine operation (20). In the operative position, the actuation means (100) is extended to form a mechanical linkage so that the motion from all the cam lobes (220, 232 & 233) is transmitted to the at least one exhaust valve (300) for the engine braking operation (10). The apparatus further comprises control means (50) for moving the actuation means (100) between the inoperative position and the operative position to achieve the conversion between the normal engine operation (20) and the engine braking operation (10). The apparatus also includes valve lash adjusting mechanism, oil retraining means (350), and engine brake reset means (150).
Abstract:
A method of determining whether a measured fuel delivery rate determined by a fuel meter of a fuel dispenser corresponds to an actual fuel delivery rate at which fuel is being dispensed to a vehicle through a fuel flow path. The method includes measuring a fuel delivery rate at a given time during a fueling operation, measuring a fuel pressure of the fuel within the fuel flow path at the given time, comparing the measured fuel pressure to a plurality of fuel pressure values from a data set including a plurality of actual fuel delivery rate values that correspond to the plurality of fuel pressure values, retrieving one of the plurality of actual fuel delivery rate values from the data set that corresponds to the measured fuel pressure value; and comparing the measured fuel delivery rate from the fuel meter to the one actual fuel delivery rate value to determine if the measured fuel delivery rate corresponds to the actual fuel delivery rate at which fuel is being dispensed to the vehicle.
Abstract:
A system and method of actuating one or more engine valves is disclosed. In one embodiment, the system comprises: a valve train element; a rocker arm pivotally mounted on a shaft and adapted to rotate between a first position and a second position, the rocker arm selectively receiving motion from the valve train element; a valve bridge disposed above the one or more engine valves; and a lost motion system disposed in the valve bridge.
Abstract:
A lost motion engine valve actuation system and method of actuating an engine valve are disclosed. The system may comprise a valve train element, a pivoting lever, a control piston, and a hydraulic circuit. The pivoting lever may include a first end for contacting the control piston, a second end for transmitting motion to a valve stem and a means for contacting a valve train element. The amount of lost motion provided by the system may be selected by varying the position of the control piston relative to the pivoting lever. Variation of the control piston position may be carried out by placing the control piston in hydraulic communication with a control trigger valve and one or more accumulators. Actuation of the trigger valve releases hydraulic fluid allowing for adjustment of the control piston position. Means for limiting valve seating velocity, filling the hydraulic circuit upon engine start up, and mechanically locking the control piston/lever for a fixed level of valve actuation are also disclosed.
Abstract:
Apparatus and method are disclosed for converting an internal combustion engine from a normal engine operation (20) to an engine braking (or retarding) operation (10). The apparatus has an actuation means (100) containing two braking pistons (160) slidably disposed in the valve bridge (400) between an inoperative position (0) and an operative position (1). The apparatus also has a flow control valve (50) for supplying control fluid to the actuation means (100) with two levels of pressure. At the first level or lower pressure, the braking pistons (160) will stay in the inoperative position (0), and a gap (234) is formed between the valve bridge (400) and the exhaust valves (300) to skip the motion from the lower portion of the cam (230) for the normal engine operation (20). At the second level or higher pressure, the braking pistons (160) will be moved to the operative position (1), and a linkage is formed between the valve bridge (400) and the exhaust valves (300) so that the motion from the whole cam (230) can be transmitted to the valves (300) for the engine braking operation (10). The apparatus also includes a supporting means (250) for preventing any no-follow of the valve train components and a resetting means (150) for modifying the valve lift profile (220v) generated by the cam (230). The supporting means (250) does not impose any force on the braking pistons (160), while the resetting means (150) stays at the off or draining position during the normal engine operation (20).
Abstract:
Methods and apparatus for actuating an engine valve provided between an engine cylinder and an exhaust manifold to provide compression-release engine braking in combination with exhaust gas restriction and brake gas recirculation are disclosed. In a first embodiment of the present invention, the engine valve used to provide brake gas recirculation and compression-release braking may be maintained slightly open between the brake gas recirculation and compression-release events. In another embodiment of the present invention, the cam closing ramp for a main exhaust event may be extended to terminate near the beginning of a brake gas recirculation event to facilitate refilling a hydraulic valve actuation system used to in association with the exhaust valve.
Abstract:
Methods and apparatus for actuating an engine valve provided between an engine cylinder and an exhaust manifold to provide compression-release engine braking in combination with exhaust gas restriction and brake gas recirculation are disclosed. In a first embodiment of the present invention, the engine valve used to provide brake gas recirculation and compression-release braking may be maintained slightly open between the brake gas recirculation and compression-release events. In another embodiment of the present invention, the cam closing ramp for a main exhaust event may be extended to terminate near the beginning of a brake gas recirculation event to facilitate refilling a hydraulic valve actuation system used to in association with the exhaust valve.