Abstract:
A transmitting UE may in a device-to-device (D2D) communication may identify a demodulation reference signal (DMRS) sequence for a D2D transmission based at least in part on a subset of bits of a sidelink control information (SCI) transmission. The subset of bits of the SCI transmission may be selected such that the bits have sufficient variability to reduce the likelihood that multiple UEs may use the same DMRS sequence. The subset of bits of the SCI transmission may be all or a portion of a cyclic redundancy check (CRC) for the SCI.
Abstract:
Example methods and apparatuses for managing polling in devices implementing proximity services are presented. For instance, an example method of polling management in a ProSe system is presented, which includes receiving, at a network entity, a polling message from a first UE. In addition, the example method may also include receiving, at the network entity and after receiving the polling message, one or both of a first location report associated with the first UE and a second location report associated with a second UE. Furthermore, the example method may include determining whether to generate a polling response message upon receiving one or both of the first location report and the second location report, wherein the polling response message includes a next polling time for the first UE that is based on a location reporting schedule associated with one or both of the first UE and the second UE.
Abstract:
A method, an apparatus, and a computer program product for congestion control are provided. The apparatus measures respective signal qualities in at least two regions of a resource block, compares the respective signal qualities to each other, and determines a network congestion level based on the comparison. In an aspect, the apparatus may further decide whether to use resources respectively included in the at least two regions based on the network congestion level. Alternatively, the apparatus may further identify at least one MTC device or UE to refrain from using resources respectively included in the at least two regions when the network congestion level is above a threshold, and transmit a congestion control signal to the at least one identified MTC device or identified UE when the network congestion level is above the threshold.
Abstract:
Methods, systems, and devices are described for managing a multimedia broadcast multicast service (MBMS). In one configuration, service announcement information for at least one MBMS may be received. At least a subset of the service announcement information may be broadcast in a peer discovery signal. Content of the at least one MBMS may then be relayed to at least one mobile device operating outside a coverage area of a base station. In another configuration, an out-of-coverage status indicator or MBMS query may be broadcast in a first peer discovery signal, and a second peer discovery signal may be received from at least one MBMS relay device. The second peer discovery signal may include at least a subset of service announcement information for at least one MBMS.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus may be a target UE, an initiator UE, or an MME. In one configuration, the apparatus is an initiator UE. The initiator UE determines a network address of a target UE based on a target expression, sends a connection request including information associated with the initiator UE to the target UE at the determined network address, sends information associated with the target UE to an MME serving the initiator UE, and receives, from the MME serving the initiator UE, one or more parameters for communicating with the target UE. Further, the initiator UE communicates with the target UE based on the one or more parameters.
Abstract:
Methods, systems, and devices are described for managing wireless communications. In one method, a mobile device may determine to transition to a relay status. The relay status may indicate a capability of the mobile device to function as a relay device between at least one other mobile device and a base station. A peer discovery signal that indicates the relay status may then be transmitted. In another method, a mobile device may broadcast an out-of-coverage status indicator in a first peer discovery signal. A second peer discovery signal may be received from at least one other mobile device. The second peer discovery signal may indicate a capability of the at least one other mobile device to function as a relay device.
Abstract:
Methods, systems, and apparatuses are described for managing a multimedia broadcast multicast service (MBMS). In one configuration, content of an MBMS may be received while operating in a coverage area of a base station. A transition to operate outside the coverage area of the base station may be sensed. A peer discovery signal to request a relay of the content of the MBMS may be transmitted. The peer discovery signal may include an identifier of the MBMS. In another configuration, a first peer discovery signal including an out-of-coverage status indicator for the mobile device or MBMS query and an identifier of an MBMS may be received from the mobile device. A determination may be made regarding whether to relay content of the MBMS. Upon determining to relay the content of the MBMS, a second peer discovery signal indicating a capability to relay the content of the MBMS may be transmitted.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus receives indication of a transmission scheme for decoding multicast/broadcast data transmitted from a sender, receives a reservation signal for the multicast/broadcast data from the sender, determines whether the receiver is capable of decoding the multicast/broadcast data at the indicated transmission scheme, and transmits a confirmation signal for the multicast/broadcast data to the sender after determining that the receiver is capable of decoding the multicast/broadcast data at the indicated transmission scheme. The apparatus receives the multicast/broadcast data according to the transmission scheme after the confirmation signal is transmitted. Alternatively, the apparatus suppresses transmission of the confirmation signal when it is determined that the receiver is not capable of decoding the multicast/broadcast data at the indicated transmission scheme.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus may be an initiator UE, a target UE, an MME of an initiator UE, or an MME of a target UE. In one configuration, the apparatus is a target UE. The target UE broadcasts information for identifying an MME serving the target UE along with a target expression of the target UE, receives, from the MME serving the target UE, parameters and a key for communicating with an initiator UE, and communicates securely with the initiator UE based on the key.
Abstract:
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may initiate a radio resource control (RRC) layer signaling procedure between the UE and a target UE, include an upper layer signaling message in an RRC message based in part on the RRC layer signaling procedure, and transmit the RRC message including the upper layer signaling message to the target UE. Alternatively, upper layer signaling messages may be transmitted separately before or after the RRC layer signaling procedure.