Abstract:
Certain aspects of the present disclosure provide techniques for releasing an RRC connection by a user equipment (UE). A method that may be performed by the UE includes establishing an RRC connection, determining a time duration for a release timer, resetting the release timer, monitoring the RRC connection, and releasing the RRC connection.
Abstract:
Certain aspects of the present disclosure provide techniques for predicting an amount of uplink data to report in a buffer status report (BSR). A method that may be performed by a user equipment (UE) includes predicting a value of a parameter related to transmission of uplink data from the UE; determining an amount of uplink data to report in the BSR based on at least the predicted value of the parameter, and transmitting the BSR including an indication of the determined amount of uplink data.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may initiate a broadcast or multicast (broadcast/multicast) application associated with a first radio access technology (RAT) while the UE is in a standalone mode for a second RAT; switch from the second RAT to the first RAT based at least in part on initiating the broadcast/multicast application; and switch from the first RAT to the second RAT based at least in part on failing to detect a communication associated with the broadcast/multicast application using the first RAT. Numerous other aspects are provided.
Abstract:
Systems, methods, and devices of the various aspects may enable a mobile communication device to make a second emergency call attempt in a packet switched (PS) domain in response to determining that a first emergency call attempt in a PS domain failed. The various aspects may enable a second emergency call attempt in a PS domain without requiring the mobile communication device to attempt an emergency call in a circuit switched (CS) domain in response to determining that a first emergency call attempt in a PS domain failed.
Abstract:
Certain aspects of the present disclosure provide techniques for per-flow jumbo maximum transmission unit (MTU) in new radio (NR) systems. A method of wireless communication by a user equipment (UE) is provided. The method generally includes determining a default MTU size to be used for communications in a packet data network (PDN). The method includes determining one or more per-flow MTU sizes, different than the default MTU size, to be used for communications in the PDN. The method includes communicating in the PDN according to the determined per-flow MTU sizes.
Abstract:
A method, an apparatus, and a computer program product for communication in a network. The apparatus sends a multicast message to a network device. The multicast message facilitates discovery of an unknown IP address of the network device. The apparatus determines whether a first response message is received from the network device in response to the multicast message and determines the IP address of the network device from the first response message when the first response message is received from the network device. The apparatus establishes a secure connection with the network device using the determined IP address. The apparatus sends a link status check message to the network device to detect a failed end-to-end link between the apparatus and the network device.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus receives a request to receive a Multimedia Broadcast Multicast Service (MBMS) service associated with a service area identity (SAI) and a second frequency. The apparatus performs inter-frequency cell reselection from a first cell transmitting at a first frequency to a second cell transmitting at the second frequency, the second cell being an inter-frequency neighbor cell to the first cell. The apparatus receives system information from the second cell. The apparatus determines that the second cell transmitting at the second frequency is unassociated with the SAI based on the received system information. The apparatus blacklists the SAI on the second frequency in a blacklist for at least a period of time upon determining that the second cell is unassociated with the SAI.
Abstract:
Methods and apparatus for wireless communication at a user equipment (UE) include sending an uplink enhancement message to a network entity when an uplink enhancement condition has been detected. Further, the methods and apparatus include receiving communication from the network entity in response to sending the uplink enhancement message. Moreover, methods and apparatus for wireless communication at a network entity include detecting an uplink enhancement condition. Additionally, the methods and apparatus include transmitting a network entity originated uplink enhancement message to a UE in response to detecting the uplink enhancement condition.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus receives an MBMS service from a first cell in a first MBSFN area while in an RRC idle mode. The apparatus reselects to a second cell through an intra-frequency cell reselection upon moving into coverage of the second cell. The second cell is a non-MBSFN cell or an MBSFN cell in a second MBSFN area different than the first MBSFN area. The apparatus continues to receive the MBMS service directly from the first cell while receiving paging signals from the second cell.
Abstract:
A process includes receiving a first communication on a first call associated with a first subscriber identity module (SIM) in an user equipment (UE). The process further includes receiving a second communications on a second call associated with a second SIM in the UE. The process also includes outputting from the UE the received first communications and the received second communications. The process further includes selectively transmitting communications from the UE to an active call selected from one of the first call or the second call.