Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided in which a scheduling entity determines a first direction of a backhaul link traffic between a first scheduling entity and a second scheduling entity, and determines a second direction of an access link traffic between the scheduling entity and a user equipment (UE) based on the first direction of the backhaul link traffic to reduce potential interference caused by the access link traffic. The scheduling entity transmits or receives the access link traffic in the second direction utilizing at least one of a same transmission resource of the backhaul link traffic. Other aspects, embodiments, and features are also claimed and described.
Abstract:
Methods and apparatuses are provided which may be used in a base station and/or user equipment (UE) to support or otherwise provide device-to-device (D2D) communication in a shared radio frequency spectrum between candidate UEs. For example, a base station may determine that a first UE and a second UE are candidates for D2D communication, and provide and indicate that a Grant-free Uplink (GUL) resource allocation for D2D communication between the first and second UEs. The base station may further monitor the D2D communication.
Abstract:
Methods, systems, and apparatuses are described for wireless communication at a cell. The cell may transmit, from the cell to a plurality of neighboring cells, a frame configuration message. The frame configuration message may identify the current frame as a switching frame capable of dynamically switching a communication direction. The cell may switch, based at least in part on the frame configuration message, a communication direction between the cell and a user equipment (UE) for at least a portion of the current frame. The cell may communicate with the UE during the current frame according to the switched communication direction.
Abstract:
Techniques are described for wireless communication. One method includes transmitting, from a first communication device, a relay search query to a plurality of relay candidates; receiving a relay search query response indicating a relay that provides at least a threshold device-to-relay-to-device (DRD) capacity for communications between the first communication device and a second communication device; and communicating with the second communication device through the indicated relay based at least in part on the relay search query response.
Abstract:
Methods, systems, apparatuses, and devices are described for predicting an automatic gain control setting for long range discovery in a peer-to-peer network. In one configuration, an energy of each resource of a first set of resources may be estimated. A total energy of a second set of resources used for long range discovery in the peer-to-peer network may be predicted. The predicted total energy may be based at least in part on the estimated energy of each resource of the first set of resources. An automatic gain control setting for the second set of resources may be predicted based at least in part on the predicted total energy.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided in which a scheduling entity determines a first direction of a backhaul link traffic between a first scheduling entity and a second scheduling entity, and determines a second direction of an access link traffic between the scheduling entity and a user equipment (UE) based on the first direction of the backhaul link traffic to reduce potential interference caused by the access link traffic. The scheduling entity transmits or receives the access link traffic in the second direction utilizing at least one of a same transmission resource of the backhaul link traffic. Other aspects, embodiments, and features are also claimed and described.
Abstract:
Various methods and apparatus are directed to collision detection and/or avoidance regarding peer to peer connection identifiers. A wireless communications device broadcasts a signal indicating its acquired connection identifier in one of two alternative blocks. A base station monitors peer to peer signaling in its coverage area and tracks the usage of peer to peer connection identifiers by pairs of devices. The base station detects when multiple pairs of devices are using the same peer to peer connection identifier. The base station provides assistance to the peer to peer network to avoid a collision or facilitate rapid collision detection by the peer to peer devices. In one approach the base station sends an instruction for a connection to switch its connection identifier. In another approach the base station sends a connection a message to bias its selection as to which of the two alternative blocks to use for transmission.
Abstract:
Methods, systems, apparatuses, and devices are described for predicting an automatic gain control setting for long range discovery in a peer-to-peer network. In one configuration, an energy of each resource of a first set of resources may be estimated. A total energy of a second set of resources used for long range discovery in the peer-to-peer network may be predicted. The predicted total energy may be based at least in part on the estimated energy of each resource of the first set of resources. An automatic gain control setting for the second set of resources may be predicted based at least in part on the predicted total energy.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided in connection with selection of a communication mode based on traffic type information. In one example, a network entity (e.g., a WiFi router, Picocell, Fentocell, an eNB, etc.) is equipped to obtain traffic type information for content to be transmitted by a network entity, determine a communication mode to use for transmission of the content based on the traffic type information, and transmit the content using the determined communication mode. In an aspect, the traffic type information may indicate that the content is a best effort traffic type, a latency sensitive traffic type, or no traffic type is available.
Abstract:
In some implementations, a user equipment (UE) may transmit, to a second UE, sidelink configuration information indicating one or more transmission configuration indicator (TCI) states for at least one sidelink channel between the first UE and the second UE.