Abstract:
Systems, methods, and apparatuses for communicating multi-destination traffic are provided. One aspect of this disclosure provides a method of communicating including generating a wireless frame including first and second data portions, and a transmission schedule indicating the first data portion is transmitted using a first modulation and coding scheme (MCS) and the second data portion is transmitted using a second modulation and coding (MCS) scheme. The method may also include transmitting the frame, wherein the first portion is transmitted using the first modulation and coding scheme to a first device and the second portion is transmitted using the second modulation and coding scheme to a second device.
Abstract:
Methods, devices, and computer program products communicating discovery information in a wireless neighborhood aware network (NAN). One method includes receiving, at a first wireless device, a message from a neighboring wireless device. The message includes a data structure indicative of discovered device identifiers. The method further includes determining whether the data structure indicates an identifier of the first wireless device. The method further includes transmitting a message including the identifier of the first wireless device when the data structure does not indicate the identifier of the first wireless device.
Abstract:
A method includes generating a service discovery frame at a first electronic device of a data link of a neighbor aware network (NAN). The service discovery frame may include an attribute identifying a subset of electronic devices of the data link as recipients of data from the first electronic device during a transmission window or identifying a time period corresponding to data announcements and timing information of data transmissions corresponding to the data link. The method further includes transmitting the service discovery frame to electronic devices other than the first electronic device.
Abstract:
A device may join an existing mesh network by authenticating with only one of a plurality of member devices of the existing mesh network. Once the device has successfully authenticated with the only one member device, the device may receive a common group key. The device may send a route request message encrypted with the common key to one or more of the plurality of member devices of the existing mesh network. In response, the device may receive one or more route reply messages encrypted with the common key from one or more of the plurality of member devices of the existing mesh network. The device may determine an optimal route to one or more provider member devices of the existing mesh network based on the received route reply messages.
Abstract:
Methods, systems, and devices are described for communications via a mesh network. To join an existing mesh network, a wireless communication device may identify a member device from a plurality of member devices of an existing mesh network. The wireless communication device may communicate with the identified member device to participate in a single authentication procedure. Upon successfully completing the single authentication procedure, the wireless communication device may join the existing mesh network without needing any additional authentication procedures with another member device of the plurality of member devices to join the existing mesh network. This approach may be used for any mesh network, such as a social Wi-Fi mesh network.
Abstract:
Methods, devices, and computer program products for synchronization of wireless devices in a peer-to-peer network are described herein. In one aspect, a method for synchronizing a wireless communication apparatus is provided. The method includes initiating a contention based process for transmitting a synchronization message during a discovery time interval of a discovery time period. The synchronization message includes a first timestamp of the wireless communication apparatus. The method further includes selectively transmitting the synchronization message based on a master preference value of the wireless communication apparatus.
Abstract:
Methods, devices, and computer program products for optimization of message transmission intervals in a NAN are described herein. In one aspect, a method for discovering a cluster of STA's forming a NAN is provided. The method includes generating a NAN beacon at an access point (AP). The NAN beacon includes timing information for the NAN. The timing information indicates a first time interval when one or more messages can be transmitted within the NAN. The method further includes transmitting the NAN beacon.
Abstract:
Methods, devices, and computer program products communicating discovery information in a wireless neighborhood aware network (NAN). One method includes receiving a message from a neighboring wireless device. The message includes an identifier associated with the neighboring wireless device. The method further includes adding the identifier to a data structure indicative of discovered device identifiers. The method further includes transmitting a message including the data structure indicative of discovered device identifiers.
Abstract:
A user equipment (UE) uses information regarding dynamic resource allocation in a mobile wireless service (MWS) radio access technology (RAT) to improve MWS and wireless connectivity network (WCN) RAT coexistence. The UE may receive an indication of time and frequency resources of future activity of the MWS RAT. The UE may schedule communications of the WCN RAT based at least in part on the indication of the time and frequency resources of the future activity.
Abstract:
Methods, systems, and devices for wireless communications are described. Techniques described herein provide for a termination of a neighbor awareness networking (NAN) pairing session between a first NAN device and a second NAN device. A first NAN device that has initiated a pairing session with a second NAN device may transmit a deauthentication frame to the other NAN device to terminate the pairing session and remove the authentication key(s). The first NAN device and second NAN device terminate the pairing session and remove the authentication key(s). The deauthentication frame may include a header that indicates the addresses for the first and second NAN devices. In some cases, the first NAN device may establish NAN communications with multiple peer devices (e.g., in a NAN cluster). The first NAN device may multicast the deauthentication frame to the multiple devices. The multicast deauthentication frame may include an identifier for the NAN cluster.