Abstract:
Disclosed are a BBU power configuring method and a BBU which determine required power which is requested by a BBU to an RRH to transmit a downlink signal to a terminal based on RRH power headroom information in a cloud LAN environment in which the RRH and the BBU are separated and transmit a power allocation change request message for making a request for changing transmission power of other BBUs connected to the RRH to the other BBUs.
Abstract:
One embodiment of the present invention provides a method for determining a radio resource by a terminal. According to the method, information on a second cell can be received from a first cell, wherein a radio resource of the first cell includes a plurality of wireless frames along a time axis, each wireless frame includes a plurality of subframes, and the information on the second cell can include an ID of the second cell. In addition, a radio resource of the second cell can be determined by using the information on the second cell, wherein the radio resource of the second cell can be determined as a partial region in the wireless frames or the subframes of the first cell, which is indicated by the information on the second cell.
Abstract:
A method for receiving a signal from a base station by a user equipment, using massive antenna array based beamforming of the base station in a wireless communication system is disclosed. The method includes receiving, from the base station, antenna shuffling information corresponding to a preferred antenna port set among a plurality of antenna ports included in the massive antenna array, measuring channel state information according to the antenna shuffling information and reporting the channel state information to the base station, and receiving, from the base station, a beamformed signal using the preferred antenna port set based on the channel state information, wherein the antenna shuffling information includes at least one of information about a start index of antenna ports included in the preferred antenna port set and information about a direction to which antenna port indexes are allocated.
Abstract:
A method is described for receiving a downlink control information (DCI) from a base station (BS) by a user equipment (UE) in a wireless communication system. The method includes monitoring a plurality of physical downlink control channel (PDCCH) candidates having the same payload size in a common search space and a UE-specific search space on a primary cell to receive the DCI. The common search space and the UE-specific search space are overlapped. If the UE is configured with a carrier indicator field (CIF), the method further includes determining that only a PDCCH in the common search space is transmitted from among the plurality of PDCCH candidates.
Abstract:
A method of supporting communication using two or more heterogeneous radio access technologies (RAT) comprises: receiving a setup message providing instructions for access to a second base station in a second communication network supporting the second RAT from a first base station in a first communication network supporting a first RAT; and attempting to access the second base station. At this time, when the terminal successfully accesses the second base station, specific traffic type data are transmitted and received through the second base station, and data other than the specific traffic type can be transmitted and received through the first base station.
Abstract:
A method for supporting communication using two or more heterogeneous radio access technologies (RAT) includes the steps of: the terminal receiving a first message that includes whether to provide support to simultaneous access two or more RATs and parameters requesting that a notification be provided for the supported RAT from a base station in a first RAT network supporting a first RAT; transmitting, to the base station in the first RAT network, a second message including an indicator indicating whether to support simultaneous access to the two or more RAT networks and information on a supported RAT network type in response to the first message, wherein the supported second RAT network type corresponds to a network that is different from the first RAT network.
Abstract:
A method for performing a channel state information (CSI) report in a wireless communication system, can include receiving, at a user equipment, a configuration message on each of a plurality of downlink component carriers (DL CCs), the configuration message including cell indexes indicating serving cells and information used for configuring the CSI report of the serving cells, and transmitting, at the user equipment, a CSI report of only a single serving cell in a corresponding subframe, wherein the transmitting of the CSI report of only the single serving cell including when CSI reports of two or more serving cells of the plurality of serving cells collide with each other in the corresponding subframe, dropping one or more CSI reports having lower priorities, and when CSI reports of different serving cells having a same priority collide with each other in the corresponding subframe, dropping CSI reports of one or more serving cells other than one serving cell having the lowest cell index.
Abstract:
A method is described for a user equipment (UE) to report channel state information (CSI) including at least one of a rank indicator (RI), a precoding matrix indicator (PMI) or a channel quality indicator (CQI) in a wireless communication system. The UE reports the RI to an evolved Node B (eNB), drops a report of the PMI after reporting the RI to the eNB, and reports the CQI to the eNB after dropping the PMI report. A rank value corresponding to the RI is changed from a rank value corresponding to a most recently reported RI before reporting the RI to the eNB. The CQI is determined based on the RI and a precoding matrix that does not correspond to the dropped PMI report.
Abstract:
The present invention relates to a wireless access system and provides methods and apparatuses for controlling and supporting dynamic cell on or off. In an embodiment of the present invention, a method for supporting on or off of a second cell at a first cell in a wireless access system includes receiving a cell on/off state indicator message indicating on or off of the second cell from the second cell, adjusting a handover offset of the second cell, taking into account interference caused by the on or off of the second cell, and transmitting handover offset information about the adjusted handover offset to at least one of the second cell and a first User Equipment (UE).
Abstract:
A method of supporting signal transmission/reception using at least two RATs and apparatus therefor are disclosed. The present invention includes, receiving, at the user equipment concurrently connected a first base station of a first communication network supportive of a first RAT and a second serving base station of a second communication network supportive of a second RAT, a setup message indicating a handover from the second serving base station to a second target base station from a first base station, terminating a connection to the second serving base station, and establishing a connection to the second target base station. Before the connection to the second serving base station is terminated, data for a specific traffic type is transceived via the second serving base station. After the connection to the second target base station is established, the data for the specific traffic type is transceived via the second target base station. Data except the specific traffic type is transceived via the first base station.