Abstract:
In an embedded apparatus including a Web server function and a plug and play function which enables and disables an operation of an option application by a detachable recording medium recording the option application while the embedded apparatus is operating, an access executing part executes an access to parameters of the option application in response to an access request, a monitoring part monitors an existence of the option application, and an acceptance rejecting part rejects an acceptance of an access request and disabling the access executing part to access the option application when the monitoring part determines that the option application does not exist when the access request is received.
Abstract:
A brushless DC motor is provided and includes: a stator assembly; a rotor assembly including a sleeve; a case assembly; and a circuit board assembly which has an electronic component mounted thereon. The case assembly is provided with an opening, the electronic component passes through the opening so as to protrude inside the case assembly, and a groove is formed at an axial end of the sleeve of the rotor assembly in order to prevent the electronic component from making contact with any part of the rotor assembly. Thus, the axial dimension of the brushless DC motor that includes the electronic component disposed to protrude inside the case assembly can be successfully reduced in such a manner that the electronic component is accommodated within the groove. Further, no electronic component is disposed around the outer circumference of the stator assembly and therefore the radial dimension also can be kept small.
Abstract:
An amplifier capable of lowering an electrical current flowing in a peak amplifier before a carrier amplifier becomes saturated to thereby improve the efficiency of an entirety of the amplifier is provided. The amplifier includes a carrier amplifier circuit having an amplifying element operable in class-AB or class-B, and a plurality of peak amplifier circuits which have amplifying elements operating in class-B or class-C and which are arranged to start an operation in stages in response to an input level. An output of the carrier amplifier circuit and outputs of the peak amplifier circuits are combined together for signal output. One of the peak amplifier circuits which is rendered operative at the lowest input level is smaller in saturation output than the carrier amplifier circuit.
Abstract:
The invention aims to converge predistortion coefficients efficiently in a predistorter adapted to compensate for distortion generated in an amplifier. Level detection means detects the level of a signal input to an amplifier. Signal acquisition means acquire a signal output from the amplifier as a feedback signal. Correspondence acquisition means updates a predistortion coefficient expressed using a set of orthogonal polynomials so that a distortion component contained in the acquired feedback signal is reduced and acquires a correspondence between the level of the signal input to the amplifier and a control coefficient for predistortion (contents of a distortion compensation table). Predistortion executing means applies distortion for predistortion with respect to the signal input to the amplifier in accordance with the control coefficient for predistortion that corresponds to the detected level based on the acquired correspondence.
Abstract:
An inductor device formed on a semiconductor substrate includes an inductor body penetrating the semiconductor substrate, taking a spiral shape and having a conductivity, and an insulating film provided between a side surface of the inductor body and the semiconductor substrate.
Abstract:
Disclosed are a high-efficiency power amplifier and base station device with respect to high-speed, broadband radio communication method. A broadband power supply circuit includes a linear voltage amplifier to which an input signal is applied, a resistor connected to an output side of the linear voltage amplifier, a switching regulator amplifying the voltage difference between both ends of the resistor to convert the amplified voltage difference into current, and a high frequency amplifier. The high frequency amplifier is designed to exhibit high efficiency at a frequency band where the efficiency of the switching regulator starts to be deteriorated, or at a high frequency band where the operation of the linear amplifier is dominant. In this case, the amplification of low frequency components are performed by the switching regulator, and the amplification of high frequency components are performed by the linear amplifier and the high frequency amplifier.
Abstract:
A high frequency power amplifier includes an amplifying device for amplifying an input high frequency signal, a harmonic reflection circuit for reflecting a harmonic outputted from the amplifying device, and a harmonic generating circuit provided at an input terminal of the amplifying device, the harmonic generating circuit including a divider for dividing an input signal of a fundamental wave into two parts, a harmonic generator for generating a second harmonic from one part of the fundamental wave signal, and a combiner for combining the second harmonic generated from the harmonic generator with the other part of the fundamental wave signal to offer a combined signal to the amplifying device, wherein the harmonic reflection circuit reflects the second harmonic.
Abstract:
A high frequency power amplifier includes an amplifying device for amplifying an input high frequency signal, a harmonic reflection circuit for reflecting a harmonic outputted from the amplifying device, and a harmonic generating circuit provided at an input terminal of the amplifying device, the harmonic generating circuit including a divider for dividing an input signal of a fundamental wave into two parts, a harmonic generator for generating a second harmonic from one part of the fundamental wave signal, and a combiner for combining the second harmonic generated from the harmonic generator with the other part of the fundamental wave signal to offer a combined signal to the amplifying device, wherein the harmonic reflection circuit reflects the second harmonic.
Abstract:
The invention aims to converge predistortion coefficients efficiently in a predistorter adapted to compensate for distortion generated in an amplifier. Level detection means (11) detects the level of a signal input to an amplifier (4). Signal acquisition means (5-7) acquire a signal output from the amplifier as a feedback signal. Correspondence acquisition means (14) updates a predistortion coefficient expressed using a set of orthogonal polynomials so that a distortion component contained in the acquired feedback signal is reduced and acquires a correspondence between the level of the signal input to the amplifier and a control coefficient for predistortion (contents of a distortion compensation table (12)). Predistortion executing means (13) applies distortion for predistortion with respect to the signal input to the amplifier in accordance with the control coefficient for predistortion that corresponds to the detected level based on the acquired correspondence.
Abstract:
A DCDC converter includes a signal splitting unit that splits an input signal into N signal components; N DCDC converter elements that process individually the N split signals; and an adder that adds outputs from the plural DCDC converter elements to generate output signals. Each of the DCDC converter elements has an operation band narrower than an applicable frequency band of the input signal, and selects a design parameter that allows a conversion efficiency of the DCDC converter elements to be optimized for any band of the applicable frequency bands. For example, the parameter of a PMOS transistor and a NMOS transistor, which configure an inverter is designed to optimize the efficiency at any of frequency bands. The frequency band of the input signal is split, and each of the split outputs is input to a DCDC converter element that has a corresponding frequency and high efficiency characteristic.