Abstract:
A linear time-of-flight mass spectrometer which operates using ionization of analyte substances adsorbed on a sample support plate and an improvement in mass resolution through delayed acceleration of the ions in front of the sample support plate. The geometric design of the mass spectrometer consists of focusing the flight time of the ions in second or higher order by maintaining geometric requirements for the lengths of acceleration paths in the ion source relative to the field-free flight path length. In computer simulations, resolutions of flight time greater than one million have been obtained even for very high ion masses provided there is a correlation in space and velocity distribution when switching on the acceleration.
Abstract:
The invention relates to methods and devices for the orthogonal injection of ions into a time-of-flight mass spectrometer, whereby the ions preferably originate from ion sources which are located outside of the vacuum system of the mass spectrometer. The invention consists of first introducing the ions into a multipole rod arrangement with extended pole rods which stretches orthogonally to the flight direction of the ions in the time-of-flight spectrometer, and then outpulsing the ions by means of a rapid change of the electrical field, perpendicular to the rod direction, through the intermediate space between two rods. The multipole arrangement can take the form of an ion storage device by fitting reflectors to the ends. The multipole arrangement can be filled with the aid of another multipole arrangement which takes the form of an ion guide. Damping of the ion oscillations with the aid of a collision gas leads to a collection of ions in a very thin thread on the axis of the multipole arrangement, providing the time-of-flight spectrometer with an excellent mass resolving power due to the uniform initial energy and low energy spread of the ions.
Abstract:
The invention relates to methods and devices for the effective introduction of ions, which are stored in an RF ion guide into a quadrupole ion trap. The invention consists of arranging a switchable ion lens between the RF ion guide and the quadrupole ion trap, and introducing the ions into the quadrupole ion trap by a suitable connection of the ion lens only during the filling period, while otherwise the ions are reflected back into the RF ion guide. The filling period can be divided up and limited to the capture intervals of the quadrupole ion trap during each RF period. Measurement of the filling rate can be made by switching open the ion lens longer then the admission interval of the quadrupole ion trap, and measuring the flow of the ions passing through on the detector.
Abstract:
A method is provided for analyzing analyte ions in a liquid using a spectrometer incorporating an ion trap, using a capillary nozzle adjacent an inlet aperture for the ion trap. The liquid is electrosprayed from the capillary nozzle by generating an electric field at the nozzle to ionise the said analyte and produce a beam of charged spray particles, and the beam of charged particles is injected into the ion trap through the inlet aperture. The pressure within the capillary is such that flow of the liquid through the capillary occurs only in the presence of the said electric field, and flow of ions into the ion trap is controlled by varying the electric field.
Abstract:
The invention relates to the mass spectrometric analysis of separated substance samples on so-called 2-D-gel electrophoresis plates, used particularly for protein determination, with ionization of the substance samples by MALDI. The molecules of the substance samples are transferred to a thin, lacquer-like smooth matrix layer which should preferably be applied to a metal sample support. Transfer takes place directly or indirectly, for example via a polyvinylidene difluoride membrane an an intermediate carrier, by electrophoretic transport of the molecules to the matrix surface. Before transfer, the proteins may be subjected to enzymatic cutting of their amino acid chains.
Abstract:
An ion trap is provided in which higher multipole field fractions can be switched on and off and, in addition, can be electrically tuned. Specifically, the electrodes of an ideally shaped ion trap are divided into rotationally symmetrical component electrodes positioned facing the interior of the ion trap on a hyperboloidal surface with rotationally symmetry.
Abstract:
The invention relates to an improved method and an apparatus for the mass-sequential ejection of ions from an RF quadrupole ion trap by electrical alternating fields which are generated in addition to the quadrupolar RF storage field and with different frequencies to it. In contrast to the already known ejection by a pure dipole field, the ions are here essentially ejected by a quadrupole field. The ions leave the ion trap through a perforated end cap and can be detected outside it with conventional means. A weak dipole field undertakes only excitation of the secular oscillation at the center, the amplitude increasing in linear manner in the stationary case. The more intense quadrupole field undertakes further widening of the oscillations with exponential growth in amplitudes. The dipole field is generated by an alternating voltage between the two end caps, while the quadrupole field is generated by an alternating voltage between the end caps on the one hand and the ring electrode on the other. The method is of particular use for the ions of very high masses ranging from approximately 5,000 u to 50,000 u. With the same mass resolution, it permits mass spectra to be recorded considerably quicker than the hitherto conventional use of pure dipole fields.
Abstract:
An improvement of a fast scanning method in an ion trap mass spectrometer comprises setting the frequency and phase relationships between the ion trap storage frequency and the ion trap excitation frequency in such a way that the ions of consecutive masses each gain precisely the same "phase rhythm" or "phase sequence". The phase rhythm, or the historical succession of phase positions up to ion ejection, is optimally set in accordance with nonlinear resonance conditions used to cause ion ejection. The excitation voltage frequency is set to a value somewhat smaller that an integral fraction of the storage voltage frequency and the scan profile is set based on the excitation frequency so that the same time is required for ions of each mass to be ejected and so that precisely an integer number of cycles of the excitation frequency is used per mass.
Abstract:
Ionization chamber for the chemical ionization of vapors of substances in ion-molecule reactions by means of ionizing primary particles and a reactance gas, having at least one inlet opening for feeding the reaction partners and at least one outlet opening for the reaction products formed in the chamber. As shown, the ionization chamber has an elongated shape. The inlet opening for the ionizing primary particles on the one hand, and the outlet opening for the reaction products on the other hand, are arranged in alignment in opposite end walls of the ionization chamber.
Abstract:
Ions from an unknown and two known masses are fed through a quadrupole mass filter to an electron multiplier detector whose digitally converted output is supplied to a data processing device. The latter controls the alternating and DC signals fed to the paired electrode rods of the filter. The data processing device performs transformations on the mass characteristic curves derived from the ions to equalize their widths, heights and shapes, and then determines the distance between the normalized curves using a voltage shifting technique to superimpose the curves one on another. The unknown mass may then be accurately determined from the separation distances.