Abstract:
A liquid dispenser includes a substrate. A first portion of the substrate defines a liquid dispensing channel including an outlet opening. A second portion of the substrate defines a liquid supply channel and a liquid return channel. A liquid supply provides a continuous flow of liquid from the liquid supply through the liquid supply channel through the liquid dispensing channel through the liquid return channel and back to the liquid supply. A diverter member, positioned on a wall of the liquid dispensing channel that includes the outlet opening, is selectively actuatable to divert a portion of the liquid flowing through the liquid dispensing channel through outlet opening of the liquid dispensing channel. The diverter member includes a MEMS transducing member. A first portion of the MEMS transducing member is anchored to the wall of the liquid dispensing channel that includes the outlet opening. A second portion of the MEMS transducing member extends into a portion of the liquid dispensing channel that is adjacent to the outlet opening and is free to move relative to the outlet opening. A compliant membrane is positioned in contact with the MEMS transducing member. A first portion of the compliant membrane separates the MEMS transducing member from the continuous flow of liquid through the liquid dispensing channel. A second portion of the compliant membrane is anchored to the wall of the liquid dispensing channel that includes the outlet opening.
Abstract:
A continuous liquid ejection system includes a substrate and an orifice plate affixed to the substrate. Portions of the substrate define a liquid chamber. The orifice plate includes a MEMS transducing member. A first portion of the MEMS transducing member is anchored to the substrate. A second portion of the MEMS transducing member extends over at least a portion of the liquid chamber and is free to move relative to the liquid chamber. A compliant membrane is positioned in contact with the MEMS transducing member. A first portion of the compliant membrane covers the MEMS transducing member and a second portion of the compliant membrane is anchored to the substrate. The compliant membrane includes an orifice. A liquid supply provides a liquid to the liquid chamber under a pressure sufficient to eject a continuous jet of the liquid through the orifice located in the compliant membrane of the orifice plate. The MEMS transducing member is selectively actuated to cause a portion of the compliant membrane to be displaced relative to the liquid chamber to cause a drop of liquid to break off from the liquid jet.
Abstract:
A system that incorporates teachings of the present disclosure may include, for example, a network device having a controller programmed to store a subscriber selectable preference for advertisements and for video channel distribution to send to a set top box (STB) and receive a signal from a broadcast stream indicating the location for insertion of an advertisement based on the subscriber selectable preference. Other embodiments are disclosed.
Abstract:
A method of operating a semiconductor device, a semiconductor device and a digital micromirror system are presented. In an embodiment, the semiconductor device comprises a grounded substrate, a memory array, and a reset driver. The memory array may be isolated from the grounded substrate with a buried layer. The set of voltages of the memory array may be shifted with respect to a reset voltage. The reset driver may drive the reset voltage and the reset driver may have at least one extended drain transistor in the grounded substrate.
Abstract:
In accordance with particular embodiments, a system for displaying modulated light includes a spatial light modulator comprising a plurality of micromirrors having a pixel pitch less than 17 micrometers. The system also includes an intermediate voltage generator operable to generate a negative voltage and a positive voltage. The system further includes at least two level shifters coupled to the intermediate voltage generator. The system additionally includes a reset driver coupled to the at least two level shifters and to at least a subset of the plurality of micromirrors. The reset driver is operable to drive the subset of the micromirrors. The spatial light modulator, the intermediate voltage generator, the at least two level shifters, and the reset driver are all incorporated on a common substrate.
Abstract:
Device comprising an ohmic via contact, and method of fabricating thereof. A preferred embodiment comprises forming a metal layer over a substrate, forming a conductive barrier layer over the metal layer, depositing an insulating layer over the conductive barrier layer, creating an opening in the insulating layer to expose the conductive barrier layer, and forming a via contact in the opening. The conductive barrier layer protects the metal layer by preventing the formation of an oxide layer, which could reduce conductivity.
Abstract:
A method of operating a semiconductor device, a semiconductor device and a digital micromirror system are presented. In an embodiment, the semiconductor device comprises a grounded substrate, a memory array, and a reset driver. The memory array may be isolated from the grounded substrate with a buried layer. The set of voltages of the memory array may be shifted with respect to a reset voltage. The reset driver may drive the reset voltage and the reset driver may have at least one extended drain transistor in the grounded substrate.
Abstract:
Device comprising an ohmic via contact, and method of fabricating thereof. A preferred embodiment comprises forming a metal layer over a substrate, forming a conductive barrier layer over the metal layer, depositing an insulating layer over the conductive barrier layer, creating an opening in the insulating layer to expose the conductive barrier layer, and forming a via contact in the opening. The conductive barrier layer protects the metal layer by preventing the formation of an oxide layer, which could reduce conductivity.
Abstract:
A one transistor one capacitor micromirror with DRAM memory cell built around a large polysilicon-to-substrate capacitor which is not susceptible to recombination of photo-generated carriers caused by illumination in the projector. This large polysilicon-to-substrate capacitor overshadows the much smaller inherent parallel depletion capacitance which is sensitive to light. The device is further 100% shielded from exposed light by metal layers and the address node is located under the center of the micromirror mirror to obtain maximum shielding of light for the smaller, light sensitive, depletion portion of the capacitance. As a result the micromirror of this invention can adequately hold the cell charge in excess of the device load time of 300 &mgr;Sec even in extremely high brightness projector applications. This invention also provides a feature which automatically forces micromirror mirrors located over bad CMOS memory cell to the dark state, which is much less objectionable in most applications, thereby improving the overall effective processing yield.
Abstract:
An improved memory cell (600) for use in a high-intensity light environment. The memory (600) comprises a substrate (616) capable of generating photocarriers when exposed to radiant energy, at least one transistor (602), at least one capacitor (604), and address node (610) electrically connecting the transistor (602) and the capacitor (604), and an active collector region (626). The active collector region (626) is fabricated in the substrate (616) in a position to allow the active collector region (626) to recombine photocarriers traveling through the substrate (616) thus preventing the photocarriers from reaching the address node (610).