Abstract:
Various embodiments are generally directed to an apparatus, method and other techniques to determine a bandwidth in a frequency band to communicate information to stations, determine an Orthogonal Frequency-Division Multiple Access (OFDMA) tone allocation scheme based on the bandwidth, the OFDMA tone allocation scheme to include one or more resource units each comprising a plurality of tones and each having a fixed location in the bandwidth, and communicate information to the stations based on the OFDMA tone allocation scheme.
Abstract:
Methods, devices and a computer-readable medium are disclosed for subcarrier allocation to multiple users in wireless local-area networks in accordance with orthogonal frequency division multiple access (OFDMA). A high-efficiency wireless local-area network (HEW) master device is disclosed. The HEW master device includes circuitry configured to transmit data to a plurality of HEW devices, in accordance with OFDMA, on a plurality of noncontiguous sub-channels. Each noncontiguous sub-channel may be a plurality of subcarriers across a bandwidth. A HEW device is disclosed. The HEW device may include circuitry configured to transmit data to a HEW master device, in accordance with OFDMA and a resource map, on a noncontiguous sub-channel over a bandwidth. The circuitry may be further configured to transmit the noncontiguous subcarriers at a greater power level than a regulatory power level for the plurality of interlaced subcarriers if the plurality of interlaced subcarriers were contiguous.
Abstract:
Embodiments of a high-efficiency WLAN (HEW) master station and method for communicating in accordance with a scheduled OFDMA technique on secondary channels are generally described herein. An access point is configured to operate as part of a basic-service set (BSS) that includes a plurality of high-efficiency WLAN (HEW) stations and a plurality of legacy stations. The BSS operates on a primary channel and one or more secondary channels. In accordance with some embodiments, the access point may communicate with one or more of the HEW stations on one or more of the secondary channels in accordance with a scheduled OFDMA communication technique when the primary channel is utilized for communication with one or more of the legacy devices.
Abstract:
Embodiments of a high-efficiency Wi-Fi (HEW) station, access point (AP), and method for communication in a wireless network are generally described herein. In some embodiments, the HEW AP may transmit a resource allocation message to indicate an allocation of channel resources for uplink transmissions by one or more HEW stations. The channel resources may include multiple channels, each of which may include multiple sub-channels and an extra portion of channel resources. The resource allocation message may include multiple sub-channel allocation blocks to indicate an allocation for a particular HEW station. A length of the sub-channel allocation blocks may be based on various factors, such as a number of channels included in the channel resources and a sub-carrier bandwidth.
Abstract:
Apparatuses, computer readable media, and methods for extending a long-training field are disclosed. An apparatus of a high-efficiency (HE) wireless local-area network (HEW) device is disclosed. The apparatus including transceiver circuitry and processing circuitry configure to determine if a HE long training field (HE-LTF) portion of a HE physical layer convergence procedure (PLCP) protocol data unit (HE-PPDU) is to be extended, and if the HE-LTF portion is to be extended, configure the HE-LTF portion to use a longer symbol duration, or one or more additional HE-LTFs. The transceiver circuitry and processing circuitry configure also to transmit the HE-PPDU in accordance with orthogonal frequency division multiple access (OFDMA). An apparatus of a HEW device includes circuitry configured to receive a HE-LTF portion of a HE-PPDU, determine if the HE-LTF portion of the HE-PPDU is extended, and if the HE-PPDU portion is extended, use the extended portion to improve channel estimates.
Abstract:
Generally discussed herein are devices and methods for providing devices with packet duration and/or transmit and/or receive time frame information. An apparatus can include processing circuitry and transceiver circuitry configured to generate a packet for transmission on one or more sub-channels for one or more stations, each sub-channel comprising a common wake-up physical synchronization, a station dedicated wake-up preamble, and a packet length, wherein each station dedicated wake-up preamble comprises a wake-up identifier for a station of the one or more stations and the packet length indicates a duration of the packet, and wherein a station of the one or more stations includes a receive bandwidth of less than twenty megaHertz, and transmit the packet to the one or more stations during a transmission opportunity (TXOP) obtained by the AP.
Abstract:
Embodiments of a high-efficiency Wi-Fi (HEW) station, access point (AP), and method for communication in a wireless network are generally described herein. In some embodiments, the HEW AP may transmit a resource allocation message to indicate an allocation of channel resources for uplink transmissions by one or more HEW stations. The channel resources may include multiple channels, each of which may include multiple sub-channels and an extra portion of channel resources. The resource allocation message may include multiple sub-channel allocation blocks to indicate an allocation for a particular HEW station. A length of the sub-channel allocation blocks may be based on various factors, such as a number of channels included in the channel resources and a sub-carrier bandwidth.
Abstract:
In a wireless network, a user equipment (UE) can communicate with an Evolved Node B (eNodeB). During at least some times, the UE transmits a data stream to the eNodeB, over one of several available antenna states on the UE. The antenna states can include one or more tuning states for each antenna port on the UE. At predetermined times, which can be periodic, the UE ceases transmission of the data stream, transmits a test signal sequentially over each of its antenna states, receives a signal back from the eNodeB indicating which of the antenna states provides the strongest signal, and switches to the indicated antenna state. After switching, the UE can resume transmission of the data stream over the indicated antenna state. In some examples, the UE can repeat the antenna tuning/retuning process periodically.
Abstract:
One exemplary embodiment provides an efficient method and architecture that allows the transmission of at least two different data services with different quality of service (QOS) and source encoding for the IEEE 802.11.ax-HEW (and beyond, 802.11ax+) Wi-Fi systems/networks. An exemplary embodiment capitalizes on the behavior of spatial modulation (SM-OFDM) transmission techniques to allow, for example, using different channel encoding rates for each category/service of data.
Abstract:
Wireless networks that use orthogonal frequency division multiplexing require a receiving device to accurately acquire and maintain synchronization with a transmitting device with respect to carrier and sampling frequency for coherent demodulation. Described herein are techniques for enabling such synchronization using pilot signals with reduced transmission overhead.