Abstract:
There is provided a method for transmitting, by a transmitter, a signal through an unlicensed band channel. The transmitter transmits an initial signal through the unlicensed band channel to preoccupy the unlicensed band channel when the unlicensed band channel is in an idle status. The transmitter includes a first partial subframe transmitted after the initial signal in a frame burst depending to transmission timing of the initial signal. Further, the transmitter transmits the frame burst through the unlicensed band channel.
Abstract:
A method and an apparatus for transmitting a resource, and a method for the HARQ retransmission using an unlicensed band include an operation of performing clear channel assessment (CCA) for the unlicensed band; and an operation of occupying a channel of the unlicensed band according to the CCA and determining whether or not the resource is transmitted based on a position of a transmission time interval (TTI) within a channel occupancy time (COT) for the channel.
Abstract:
There are provided a method and apparatus for transmitting a discovery reference signal (DRS) through transmitting the DRS to a user equipment through a channel of an unlicensed band, receiving measurement report for measurement performed based on the DRS from the user equipment, and scheduling the cell of the unlicensed band based on the measurement report and providing a service to the user equipment through the cell of the unlicensed band.
Abstract:
Disclosed herein is a method for transmitting, by a terminal, an uplink signal using a first cell type representing a cell using a licensed band frequency and a second cell type representing a cell using an unlicensed band frequency. The terminal configures at least one first radio bearer (RB) being able to use a radio resource for the first cell type and a radio resource for the second cell type for an uplink transmission. The terminal configures at least one second RB being able to use a radio resource for the first cell type for an uplink transmission. The terminal includes at least one first logical channel corresponding to the at least one first RB in a first logical channel group, and the terminal includes at least one second logical channel corresponding to the at least one second RB in a second logical channel group.
Abstract:
Provided is a data transmission system using a carrier aggregation. The data transmission system may assign a radio resource based on a correspondence relationship between a downlink and an uplink, and may transmit data using the assigned radio resource.
Abstract:
A method for receiving a reference signal including receiving a configuration about a subband from the base station through a higher layer signaling, wherein the RS is allocated to the subband; and receiving a subframe including a reference signal resource allocated by a unit of the subband, and an apparatus are provided.
Abstract:
Provided is a method of transmitting control information using a physical uplink shared channel (PUSCH) region in a system employing a multi-input multi-output (MIMO) antenna system in which transmission is performed through a plurality of layers. A method of transmitting a channel quality indicator (CQI)/precoding matrix indicator (PMI) using a PUSCH region in a system employing a MIMO antenna system in which transmission is performed through a plurality of layers includes encoding the CQI/PMI using one channel encoder, and transmitting the encoded CQI/PMI using some or all of the layers. Accordingly, it is possible to transmit uplink control information through a PUSCH region using a plurality of layers.
Abstract:
Data transmission and reception is provided by configuring control channels in a wireless communication system using a plurality of carriers. User equipment (UE) may monitor physical downlink control channel (PDCCH) candidates within common search spaces (CSSs) and User Equipment-specific search spaces (USSs). If the UE is configured with cross-carrier scheduling, when two PDCCH candidates originating from a CSS and a USS, respectively, have cyclic redundancy check (CRC) scrambled by the same Radio Network Temporary Identifier (RNTI) and have a common payload size and the same first control channel element (CCE) index, the UE may interpret that only the PDCCH originating from the CSS is transmitted, thereby solving ambiguity of downlink control information (DCI) detection.
Abstract:
A discovery method for device to device communication between terminals is disclosed. The discovery method for the device to device communication between terminals comprises the steps of: performing transmission in a first sub-frame; transmitting a discovery channel through a preset section in a second sub-frame located next to the first sub-frame; and performing transmission in a third sub-frame next to the second sub-frame. Therefore, the present invention can transmit and receive the discovery channel without colliding with other data.
Abstract:
Disclosed is a method for generating and transmitting a reference signal in a clustered DFT-spread OFDM transmission scheme. A method for generating and transmitting a DM-RS in a clustered DFT-spread-OFDM scheme comprises: a step of generating DM-RS sequences corresponding to the number of clusters allocated for an uplink transmission; and a step of mapping the generated DM-RS sequences to the relevant DM-RS symbol positions for each cluster. Accordingly, the method for generating and transmitting a reference signal according to the present invention, in which DM-RS sequences are allocated and transmitted on a cluster basis, uses a complete DM-RS sequence for each cluster, and therefore inter-cell interference can be weakened, and problems which might occur when applied to a multi-user MIMO (MU-MIMO) scheme can be solved.