Abstract:
An operation method of a first communication node may include: mapping data symbols to be transmitted to a second communication node of the communication system to resources in a first two-dimensional (2D) domain; pre-processing the data symbols mapped to the resources in the first 2D domain to spread the data symbols on resources in a second 2D domain; mapping the pre-processed data symbols to the resources in the second 2D domain; and performing multi-carrier modulation on the data symbols mapped to the resources in the second 2D domain for each of the resources in the second 2D domain.
Abstract:
An apparatus for receiving a signal through an unlicensed band includes: a processor, a memory, and a radio frequency unit, wherein the processor executes a program stored in the memory to perform: receiving a secondary synchronization signal (SSS) in at least one remaining subframe except a subframe 0 or a subframe 5 of a plurality of subframes included in a discovery signal measurement timing configuration (DMTC), and detecting the SSS by using a subframe number of the subframe 0 or the subframe 5.
Abstract:
A communication method for a third device that controls a first link established directly between a first device and a second device is provided. The third device allocates a first link identifier for identifying the first link. The third device transmits first information including the first link identifier to the first device and the second device. The third device receives, from the first device and the second device, second information including allocation acceptance information indicating the acceptance or rejection of allocation of the first link identifier.
Abstract:
A method and an apparatus for allocating uplink resources includes transmitting an uplink grant (UL Grant) for an unlicensed component carrier (UCC) to a plurality of terminals, wherein the UL Grant for a first terminal among the plurality of terminals includes a resource allocation information in which a transmission timing of the uplink data of a second terminal among the plurality of terminals is considered.
Abstract:
An apparatus for receiving a signal through an unlicensed band includes: a processor, a memory, and a radio frequency unit, wherein the processor executes a program stored in the memory to perform: receiving a secondary synchronization signal (SSS) in at least one remaining subframe except a subframe 0 or a subframe 5 of a plurality of subframes included in a discovery signal measurement timing configuration (DMTC), and detecting the SSS by using a subframe number of the subframe 0 or the subframe 5.
Abstract:
Provided are a method for generating a CSI report and a terminal thereof. The method for generating a CSI report includes: receiving a CSI-RS from a serving cell of a base station through at least one CSI-RS resource included in a CSI-RS occasion; and generating the CSI report based on the CSI-RS received through the at least one CSI-RS resource.
Abstract:
A communication method of a terminal and a communication method of a base station for a direct communication link between terminals are disclosed. A base station schedules a reference terminal to transmit a ranging code, and schedules target terminals to receive the ranging code. The reference terminal measures the ranging code received from the target terminals, and transmits a ranging code measurement result to the base station. The base station selects a terminal from among the target terminals to form the direct communication link with the reference terminal among the target terminals based on the ranging code measurement result.
Abstract:
A wireless communication system includes a first transmitter and a second transmitter. For a transmission or reception of data of a first user equipment and data of a second user equipment on resources shared by the first user equipment and the second user equipment, the first transmitter is configured for a superimposed non-orthogonal multiple access, NOMA, transmission or reception of a first data signal of the first user equipment and a second data signal of the second user equipment, and the second transmitter is configured for a superimposed non-orthogonal multiple access, NOMA, transmission or reception of a third data signal of the first user equipment and a fourth data signal of the second user equipment.
Abstract:
An apparatus serves a plurality of user equipments in a wireless communication system. For transmitting/receiving data of a plurality of user equipments, which include at least a first user equipment and a second user equipment, on resources shared by the plurality of user equipments, the apparatus transmits/receives a first data signal of the first user equipment and second data signal of the second user equipment using a non-orthogonal multiple access, NOMA, scheme. The first data signal and the second data signal are modulated using different waveforms prior to superposition of the first and second data signals.
Abstract:
A method for receiving a reference signal including receiving a configuration about a subband from the base station through a higher layer signaling, wherein the RS is allocated to the subband; and receiving a subframe including a reference signal resource allocated by a unit of the subband, and an apparatus are provided.