Abstract:
An aerial vehicle and system for automatically detecting an object (e.g., human, pet, or other animal) approaching the aerial vehicle is described. When an approaching object is detected by an object detection component, a safety profile may be executed to reduce or avoid any potential harm to the object and/or the aerial vehicle. For example, if the object is detected entering a safety perimeter of the aerial vehicle, the rotation of a propeller closest to the object may be stopped to avoid harming the object and rotations of remaining propellers may be modified to maintain control and flight of the aerial vehicle.
Abstract:
This disclosure is directed to a single blade propeller and systems, devices, and techniques pertaining to assisting in critical stages of flight (e.g., takeoff, landing, emergency situations, etc.) in vertical takeoff and landing (VTOL) aircraft. The single blade propeller may be incorporated into fixed and rotary wing VTOL aircraft as part of a first propulsion system. The first propulsion system may include one or more single blade propellers driven by electric motors, combustion engines, and/or hybrid engines. Each of the single blade propellers may include a lift-producing blade and a counterweight opposite the lift-producing blade. As each of the single blade propellers spins, it may produce lift in a direction approximately perpendicular to the horizon to effect vertical flight.
Abstract:
This disclosure is directed to monitoring a noise signature of an unmanned aerial vehicle (UAV) and varying the speed of the motors of the UAV to reduce unwanted sound (i.e., noise) of the UAV based on the noise signature. The noise signature of the UAV may be measured by an audio sensor of a vibration sensor, and feedback may be provided to the UAV. The UAV may generate noise during flight, which may include a number of noise components such as tonal noise (e.g., a whining noise such as a whistle of a kettle at full boil) and broadband noise (e.g., a complex mixture of sounds of different frequencies, such as the sound of ocean surf). By measuring the noise signature of the UAV, and varying the motor revolutions per minute (RPM) during flight operations, the UAV may reduce tonal components of the UAV noise signature.
Abstract:
This disclosure describes a system and method for operating an automated aerial vehicle wherein influences of a ground effect may be utilized for sensing the ground or other surfaces. In various implementations, an operating parameter of the automated aerial vehicle may be monitored to determine when a ground effect is influencing the parameter, which correspondingly indicates a proximity to a surface (e.g., the ground). In various implementations, the ground effect based sensing techniques may be utilized for determining a proximity to the ground, as a backup for a primary sensor system, for determining if a landing location is uneven, etc.
Abstract:
Aspects of modular airborne delivery are described. When a shipping container is provided to an airborne carrier for delivery, the airborne carrier may assess weather across a route for airborne delivery of the shipping container, evaluate an approach to drop the shipping container at a delivery zone, and calculate a remaining amount of time until a target delivery time, for example. The airborne carrier may then select components to assemble a modular unmanned aerial vehicle (UAV) based on those or other factors, and assemble the UAV using the selected components. The modular UAV may then be directed to deliver the shipping container according to instructions from the airborne carrier. According to the concepts described herein, flexibility and other advantages may be achieved using modular UAVs for airborne delivery.
Abstract:
This disclosure is directed to a single blade propeller and systems, devices, and techniques pertaining to assisting in critical stages of flight (e.g., takeoff, landing, emergency situations, etc.) in vertical takeoff and landing (VTOL) aircraft. The single blade propeller may be incorporated into fixed and rotary wing VTOL aircraft as part of a first propulsion system. The first propulsion system may include one or more single blade propellers driven by electric motors, combustion engines, and/or hybrid engines. Each of the single blade propellers may include a lift-producing blade and a counterweight opposite the lift-producing blade. As each of the single blade propellers spins, it may produce lift in a direction approximately perpendicular to the horizon to effect vertical flight.
Abstract:
This disclosure describes an automated aerial vehicle that includes one or more object detection elements configured to detect the presence of objects and an avoidance determining element configured to cause the automated aerial vehicle to automatically determine and execute an avoidance maneuver to avoid the objects. For example, an object may be detected and an avoidance maneuver determined based on a position of the object and an object vector representative of a direction and a magnitude of velocity of the object.
Abstract:
The disclosure describes an automated aerial vehicle (AAV) and system for automatically detecting a contact or an imminent contact between a propeller of the AAV and an object (e.g., human, pet, or other animal). When a contact or an imminent contact is detected, a safety profile may be executed to reduce or avoid any potential harm to the object and/or the AAV. For example, if a contact with a propeller of the AAV by an object is detected, the rotation of the propeller may be stopped to avoid harming the object. Likewise, an object detection component may be used to detect an object that is nearing a propeller, stop the rotation of the propeller, and/or navigate the AAV away from the detected object.
Abstract:
Systems and methods to reduce aerodynamic drag and/or affect flight characteristics of an aerial vehicle may include adjustable fairings associated with one or more components of the aerial vehicle. The adjustable fairings may be coupled to and at least partially surround a motor, propulsion mechanism, motor arm, strut, or other component of an aerial vehicle. In addition, the adjustable fairings may be passively movable between two or more positions responsive to airflow around the fairings, and/or the adjustable fairings may be actively moved between two more positions to affect flight characteristics. Further, the adjustable fairings may include actuatable elements to alter a portion of an outer surface of the fairings to thereby affect flight characteristics. In this manner, adjustable fairings associated with various components of an aerial vehicle may reduce aerodynamic drag and/or may improve control and safety of an aerial vehicle.
Abstract:
Directed audio-encoded data emissions systems and methods may include one or more sensors, one or more audio transmitters, and a controller configured to cause emission of directed audio-encoded data toward various objects, such as vehicles, user devices, audio input/output devices, or others. For example, responsive to detecting a potential safety situation and/or a potential intended communication situation associated with one or more detected objects, audio-encoded data having selected audio characteristics may be emitted toward the detected objects using selected audio transmitters. The audio characteristics may be selected to encode one or more instructions to be executed by the detected objects, and the instructions may cause emission of audio, visual, or haptic notifications and/or initiation of various functions or operations by the objects.