Abstract:
A housing has a bud portion abutting an elongated stem portion. The bud portion is to fit within an ear. The bud portion has a primary sound outlet at its far end that is to be inserted into an outer ear canal, and abuts the stem portion at its near end. A speaker driver is inside the bud portion. Electronic circuitry inside the housing includes a wireless communications interface to receive audio content over-the-air and in response provides an audio signal to the speaker driver. A rechargeable battery as a power source for the electronic circuitry is located inside a cavity of the stem portion. Other embodiments are also described and claimed.
Abstract:
An automatic speech recognition (ASR) triggering system, and a method of providing an ASR trigger signal, is described. The ASR triggering system can include a microphone to generate an acoustic signal representing an acoustic vibration and an accelerometer worn in an ear canal of a user to generate a non-acoustic signal representing a bone conduction vibration. A processor of the ASR triggering system can receive an acoustic trigger signal based on the acoustic signal and a non-acoustic trigger signal based on the non-acoustic signal, and combine the trigger signals to gate an ASR trigger signal. For example, the ASR trigger signal may be provided to an ASR server only when the trigger signals are simultaneously asserted. Other embodiments are also described and claimed.
Abstract:
Systems, methods, and non-transitory computer-readable storage media for performing a role swapping operation between a pair of non-tethered wireless ear buds after detecting a triggering event. Further, state information can be coordinated between devices, including in connection with performing a role swap between buds in a pair of wireless, untethered ear buds, where one wireless ear bud is in a primary role and is responsible for a connection with a companion device, and another wireless ear bud in the pair is in a secondary role.
Abstract:
An automatic speech recognition (ASR) triggering system, and a method of providing an ASR trigger signal, is described. The ASR triggering system can include a microphone to generate an acoustic signal representing an acoustic vibration and an accelerometer worn in an ear canal of a user to generate a non-acoustic signal representing a bone conduction vibration. A processor of the ASR triggering system can receive an acoustic trigger signal based on the acoustic signal and a non-acoustic trigger signal based on the non-acoustic signal, and combine the trigger signals to gate an ASR trigger signal. For example, the ASR trigger signal may be provided to an ASR server only when the trigger signals are simultaneously asserted. Other embodiments are also described and claimed.
Abstract:
Apparatus and methods to communicate audio data from either an active wireless device or a requesting wireless device to one or more audio reproduction devices that are simultaneously communicatively coupled to both the active wireless device and to the requesting wireless device are disclosed. Responsive to a request from the requesting wireless device to transmit audio data to the one or more audio reproduction devices, the active wireless device determines whether to transmit audio data from the requesting wireless device based at least in part on an audio status of the active wireless device and a set of predetermined arbitration criteria that prioritizes among applications and operating system processes that generate the audio data.
Abstract:
Docking stations that may facilitate the sharing or transfer of power among a portable computing device, a docking station, and an accessory. One example may provide power from an accessory to a portable computing device. Switches may be used to avoid harm from inadvertent contact with voltages on exposed terminals. Another example may provide power directly from a battery on a portable computing device to an accessory. Another may limit this direct connection to a first type of accessory. Examples may limit a power connection to another type of accessory through a regulator. Another example may power one or more internal circuits either through a portable computing device or an accessory, depending on a mode of operation of the portable computing device.
Abstract:
A connection-indicative signal can be received at a master electronic device from an electronic accessory. The connection-indicative signal can include a connection attribute indicative of a presence or characteristic of a connection between the electronic accessory and at least one other electronic accessory of the master electronic device. A location of the master electronic device can be determined at the master electronic device. The location can be stored at the master electronic device in association with the connection attribute. The master electronic device can detect a locate-accessory input that corresponds to a request to locate the at least one other electronic accessory; or that a locate-accessory condition is satisfied based on another connection attribute included in another connection-indicative signal received from the electronic accessory. The stored location can be retrieved in response to the detecting. A presentation that includes location information that corresponds to the stored location can be presented.