Abstract:
Controlling the output of audio based on the mode of an electronic device having a sound mode, silent mode, and mute mode, along different audio output routes. In the sound mode, all audio can be output, while only registered or authorized audio can be output in the silent mode. In the mute mode, no audio can be output. The sound and silent modes can be enabled using an interface of the device, while the mute mode can be enabled using an accessory coupled to the device. To disengage the mute mode, a user can provide a corresponding instruction using the accessory or providing an instruction on the device related to volume control. Other aspects are also described and claimed.
Abstract:
This is directed to controlling the output of audio based on the mode of an electronic device. In particular, this is directed to an electronic device having a sound mode, silent mode, and mute mode controlling the output of audio along different audio output routes. In the sound mode, all audio can be output, while only registered or authorized audio can be output in the silent mode. In the mute mode, no audio can be output. The sound and silent modes can be enabled using an interface of the device (e.g., a switch having two possible states), while the mute mode can be enabled using an accessory coupled to the device. To disengage the mute mode, a user can provide a corresponding instruction using the accessory, or providing an instruction on the device related to volume control. For example, a user can change the device volume using an on-device interface, or toggle a sound/silent switch to a sound mode.
Abstract:
This is directed to controlling the output of audio based on the mode of an electronic device. In particular, this is directed to an electronic device having a sound mode, silent mode, and mute mode controlling the output of audio along different audio output routes. In the sound mode, all audio can be output, while only registered or authorized audio can be output in the silent mode. In the mute mode, no audio can be output. The sound and silent modes can be enabled using an interface of the device (e.g., a switch having two possible states), while the mute mode can be enabled using an accessory coupled to the device. To disengage the mute mode, a user can provide a corresponding instruction using the accessory, or providing an instruction on the device related to volume control. For example, a user can change the device volume using an on-device interface, or toggle a sound/silent switch to a sound mode.
Abstract:
An electronic device for providing tactile feedback is provided. The electronic device may provide tactile feedback using any suitable approach, including for example vibration, heat, electrical, visual, or any other type of feedback. The electronic device may provide tactile feedback in response to detecting any particular status of the electronic device, receiving any particular input, or detecting any suitable communication received by the electronic device. For example, the electronic device may provide tactile feedback in response to identifying the current network of the device, the status of a particular electronic device component, or any other electronic device status. As another example, the electronic device may provide tactile feedback in response to receiving a particular type of communication, or in response to receiving a communication from a particular contact. As still another example, the electronic device may provide tactile feedback in response to receiving a particular user input, or to detecting a user's finger on a particular portion of the electronic device.
Abstract:
An electronic device for providing tactile feedback is provided. The electronic device may provide tactile feedback using any suitable approach, including for example vibration, heat, electrical, visual, or any other type of feedback. The electronic device may provide tactile feedback in response to detecting any particular status of the electronic device, receiving any particular input, or detecting any suitable communication received by the electronic device. For example, the electronic device may provide tactile feedback in response to identifying the current network of the device, the status of a particular electronic device component, or any other electronic device status. As another example, the electronic device may provide tactile feedback in response to receiving a particular type of communication, or in response to receiving a communication from a particular contact. As still another example, the electronic device may provide tactile feedback in response to receiving a particular user input, or to detecting a user's finger on a particular portion of the electronic device.
Abstract:
An electronic device for providing tactile feedback is provided. The electronic device may provide tactile feedback using any suitable approach, including for example vibration, heat, electrical, visual, or any other type of feedback. The electronic device may provide tactile feedback in response to detecting any particular status of the electronic device, receiving any particular input, or detecting any suitable communication received by the electronic device. For example, the electronic device may provide tactile feedback in response to identifying the current network of the device, the status of a particular electronic device component, or any other electronic device status. As another example, the electronic device may provide tactile feedback in response to receiving a particular type of communication, or in response to receiving a communication from a particular contact. As still another example, the electronic device may provide tactile feedback in response to receiving a particular user input, or to detecting a user's finger on a particular portion of the electronic device.
Abstract:
Apparatus and methods to communicate audio data from either an active wireless device or a requesting wireless device to one or more audio reproduction devices that are simultaneously communicatively coupled to both the active wireless device and to the requesting wireless device are disclosed. Responsive to a request from the requesting wireless device to transmit audio data to the one or more audio reproduction devices, the active wireless device determines whether to transmit audio data from the requesting wireless device based at least in part on an audio status of the active wireless device and a set of predetermined arbitration criteria that prioritizes among applications and operating system processes that generate the audio data.
Abstract:
An electronic device for providing tactile feedback is provided. The electronic device may provide tactile feedback using any suitable approach, including for example vibration, heat, electrical, visual, or any other type of feedback. The electronic device may provide tactile feedback in response to detecting any particular status of the electronic device, receiving any particular input, or detecting any suitable communication received by the electronic device. For example, the electronic device may provide tactile feedback in response to identifying the current network of the device, the status of a particular electronic device component, or any other electronic device status. As another example, the electronic device may provide tactile feedback in response to receiving a particular type of communication, or in response to receiving a communication from a particular contact. As still another example, the electronic device may provide tactile feedback in response to receiving a particular user input, or to detecting a user's finger on a particular portion of the electronic device.
Abstract:
This is directed to controlling the output of audio based on the mode of an electronic device. In particular, this is directed to an electronic device having a sound mode, silent mode, and mute mode controlling the output of audio along different audio output routes. In the sound mode, all audio can be output, while only registered or authorized audio can be output in the silent mode. In the mute mode, no audio can be output. The sound and silent modes can be enabled using an interface of the device (e.g., a switch having two possible states), while the mute mode can be enabled using an accessory coupled to the device. To disengage the mute mode, a user can provide a corresponding instruction using the accessory, or providing an instruction on the device related to volume control. For example, a user can change the device volume using an on-device interface, or toggle a sound/silent switch to a sound mode.
Abstract:
This is directed to controlling the output of audio based on the mode of an electronic device. In particular, this is directed to an electronic device having a sound mode, silent mode, and mute mode controlling the output of audio along different audio output routes. In the sound mode, all audio can be output, while only registered or authorized audio can be output in the silent mode. In the mute mode, no audio can be output. The sound and silent modes can be enabled using an interface of the device (e.g., a switch having two possible states), while the mute mode can be enabled using an accessory coupled to the device. To disengage the mute mode, a user can provide a corresponding instruction using the accessory, or providing an instruction on the device related to volume control. For example, a user can change the device volume using an on-device interface, or toggle a sound/silent switch to a sound mode.