摘要:
A signal processing method to determine whether or not a detected key-phrase is spoken by a wearer of a headphone. The method receives an accelerometer signal from an accelerometer in a headphone and receives a microphone signal from at least one microphone in the headphone. The method detects a key-phrase using the microphone signal and generates a voice activity detection (VAD) signal based on the accelerometer signal. The method determines whether the VAD signal indicates that the detected key-phrase is spoken by a wearer of the headphone. Responsive to determining that the VAD signal indicates that the detected key-phrase is spoken by the wearer of the headphone, triggering a virtual personal assistant (VPA).
摘要:
A wearable device that attaches to a body part of a user via an attachment member operates in at least a connected and a disconnected state. One or more sensors located in the wearable device and/or the attachment member detect the user's body part when present. Such detection may only be performed when the attachment member is in a connected configuration and may be used to switch the wearable device between the connected and disconnected states. In this way, the wearable device operates in the connected state when worn by a user and in the disconnected state when not worn by the user.
摘要:
An automatic speech recognition (ASR) triggering system, and a method of providing an ASR trigger signal, is described. The ASR triggering system can include a microphone to generate an acoustic signal representing an acoustic vibration and an accelerometer worn in an ear canal of a user to generate a non-acoustic signal representing a bone conduction vibration. A processor of the ASR triggering system can receive an acoustic trigger signal based on the acoustic signal and a non-acoustic trigger signal based on the non-acoustic signal, and combine the trigger signals to gate an ASR trigger signal. For example, the ASR trigger signal may be provided to an ASR server only when the trigger signals are simultaneously asserted. Other embodiments are also described and claimed.
摘要:
A wearable device configured to acquire and process electrocardiographic measurements, detect lead inversion and correct the acquired measurements for lead inversion is provided. In one example, the wearable device can detect lead inversion by first assessing whether the P-wave of a given electrocardiographic measurement has a negative amplitude, and if the P-wave is found to be negative, the device can determine if the magnitude of the R-wave is smaller than the maximum of the magnitudes of the S-wave and the Q-wave. In another example, the device can be put through an enrollment procedure in which electrocardiographic measurements are taken with the device being worn at known locations on the body. Once the enrollment procedure is completed, when the device is being used, any electrocardiographic results obtained can be compared against the measurements taken during the enrollment phase, and the location of the device on the body can be determined.
摘要:
An assistive apparatus, and a method of providing an accessibility switch output by the assistive apparatus, is described. The assistive apparatus may include an accelerometer to be worn in an ear canal of a user, and a display having a graphical user interface. The accelerometer may generate an input signal representing an input command made by the user, and more particularly, the generated input command may represent one or more hums transmitted from vocal cords of the user to the accelerometer in the ear canal via bone conduction. The assistive apparatus may provide an accessibility switch output in response to the input signals representing the input command. For example, the accessibility switch output may cause a selection of a user interface element of the graphical user interface. Other embodiments are also described and claimed.
摘要:
A method of performing automatic speech recognition (ASR) using end-pointing markers generated using accelerometer-based voice activity detector starts with a voice activity detector (VAD) generating an accelerometer VAD output (VADa) based on data output by at least one accelerometer that is included in at least one earbud. The at least one accelerometer to detect vibration of the user's vocal chords. A voice processor detects a speech signal based on acoustic signals from at least one microphone. An end-pointer generates the end-pointing markers based on the VADa output and an ASR engine performs ASR on the speech signal based on the end-pointing markers. Other embodiments are also described.
摘要:
Embodiments of the invention determine whether speaker earbuds of a headset are positioned in a user's ears. The headset may be a “Y” shaped headset with two earbuds having speakers and a plug for insertion into a jack of the audio device. Multiple microphones are located on wired lengths to the earbuds and a common wire between the lengths and the plug, to receive speech from the user's mouth. Each earbud may have a front and rear microphone, and an accelerometer. Embodiments can detect user speech vibrations at one or more of the microphones, and in the accelerometers in the earbuds. Based on these detections, it can be determined whether one or both of the earbuds are in user's ears. To provide more accurate beamforming, when only one of the earbuds is in the user's ears, only the microphones leading to that earbud are selected for beamforming input.
摘要:
A personal audio device has a bone conduction pickup transducer, having a housing of which a rigid outer wall has an opening formed therein. A volume of yielding material fills the opening in the rigid outer wall. An electronic vibration sensing element is embedded in the volume of yielding material. The housing is shaped, and the opening is located, so that the volume of yielding material comes into contact with an ear or cheek of a user who is using the personal audio device. Other embodiments are also described and claimed.
摘要:
A method performed by a near-end headphone device, while the device is engaged in a voice communication session with a far-end device. The method receives a downlink audio signal from the far-end device and drives a speaker with the downlink audio signal. The method receives an accelerometer signal from an accelerometer of the near-end device and performs echo cancellation and residual echo suppression. The method generates a combined SNR-RES signal based on a SNR of the echo cancelled the accelerometer signal and the residual echo suppression signal. The method determines whether the combined SNR-RES signal is below a threshold. In response to being below the threshold, the method gates the echo cancelled accelerometer signal, generates an uplink audio signal by blending the gated signal with a microphone signal and transmits the uplink audio signal to the far-end device.
摘要:
An electronic device that can be worn by a user can include a processing unit and one or more sensors operatively connected to the processing unit. The processing unit can be adapted to determine an installation position of the electronic device based on one or more signals received from at least one sensor.