Abstract:
A CMOS transconductor for cancelling third-order intermodulation is provided. The transconductor includes a transconductance circuit and a tuneable distortion circuit. The transconductance circuit takes an input voltage and generates an output current having a transconductance element and an IM3 element. The distortion circuit takes the same input voltage and generates a current having an IM3 element of equal amplitude and opposite phase to the IM3 element of the transconductance circuit. A controller circuit tunes the distortion circuit to adjust its IM3 element to substantially equal the amplitude of the IM3 of the transconductance circuit. The distortion and transconductance circuits are arranged to sum their output currents thereby effectively cancelling the IM3 elements, leaving the transconductance relatively unmodified.
Abstract:
A digital linear transmitter for digital to analog conversion of a radio frequency signal. The transmitter includes a delta sigma (ΔΣ) digital to analog converter (DAC) and a weighted signal digital to analog converter in the transmit path of a wireless device to reduce reliance on relatively large analog components. The ΔΣ DAC converts the lowest significant bits of the oversampled signal while the weighted signal digital to analog converter converts the highest significant bits of the oversampled signal. The transmitter core includes components for providing an oversampled modulated digital signal which is then subjected to first order filtering of the oversampled signal prior to generating a corresponding analog signal. The apparatus and method reduces analog components and increases digital components in transmitter core architecture of wireless RF devices.
Abstract:
A closed loop power output calibration system for variable power output wireless devices. The wireless device includes a wireless transceiver having a transmit core coupled to a discrete power amplifier. Power detection circuitry formed in the wireless transceiver provides a detected power level of the power amplifier, and a reference power level, both of which are converted to digital signals using existing I and Q signal analog to digital converters in the receiver core. The digital signals are processed to cancel power distortion and temperature effects to provide a resulting power feedback signal. Corrective control signals are generated in response to the power feedback signal relative to a desired power output level. The gain in the transmit core is then adjusted in response to the corrective control signals such that the power amplifier outputs the target output power level.
Abstract:
A transceiver interface architecture where the same RF transceiver can be used in wireless devices that support any number of standards, with or without receive diversity implementation. Each input port of the RF transceiver can be shared by a number of input signals, which effectively expands the number of available input ports. Input port sharing can be realized with virtual ports that receive two or more input signals and selectively pass one signal to the physical input port. The use of virtual ports allows for flexible wireless design implementations using the same RF transceiver, and in particular, for receive diversity implementations that inherently require dedicated input ports. The use of low cost and small area virtual ports obviates the need for larger and more costly RF receivers.
Abstract:
A low-phase noise voltage control oscillator (VCO) comprising a voltage source for supplying control voltage to the VCO core; a phase lock loop, having an output connected to an input of the voltage source; a VCO core, including an amplifier circuit with noiseless biasing and a tank circuit with noiseless biasing of the varactors; having an output connected to an input of the phase lock loop; and an attenuator, located between the voltage source and the VCO core, for reducing phase noise from the voltage source to the VCO core.
Abstract:
An integrated RF filter for use at microwave frequencies comprising: an integrated circuit inductor with connected integrated circuit capacitors, arranged as a tank circuit, and an integrated circuit shunt resistor; the inductor, capacitors and resistor being interconnected in a bridge-T filter arrangement.
Abstract:
The invention is implemented in the form of modifications to a Gilbert mixer circuit. The modifications alleviate disadvantages and problems introduced because of low voltage power supply typically found in low-power devices such as portable cellular phones. In addition to improving the linearity performance, the new design also provides good matching between I and Q signals, and decreases the switching noise in the active mixer by reducing the switching current. The invention can be applied to both single stage and dual mixers to give low noise performance and Automatic Gain Control (AGC).