Abstract:
A three-dimensional image adjustment method includes: displaying a three-dimensional image, which is composed by a first to Nth two-dimensional images with respective different viewing angles and formed by projecting the N two-dimensional images through a first to Nth viewing angles of a three-dimensional display apparatus, respectively, and the D1th to D2th of the N viewing angles are defined to a normal-viewing zone; and shifting the N two-dimensional images in first or second direction according to positions of first and second viewers, the D1th and D2th viewing angles, and projecting the N two-dimensional images through the first to Nth viewing angles, respectively, when the first and second viewers are located at the L1th and L2th of the N viewing angles, respectively, wherein at least one of the L1th and L2th viewing angle is located out of the normal-viewing zone. A three-dimensional display apparatus is also provided.
Abstract:
An image display method of a half-source-driving (HSD) liquid crystal display (LCD) for mitigating the screen flickering effect caused by applying a frame rate control (FRC) algorithm in the LCD includes providing a first gate sequence corresponding to a pixel array in the LCD display. If a target gray level of the pixel array is an average value of a first gray level and a second gray level, write the first gray level to a plurality of sub-pixels of the pixel array being charged first according to the first gate sequence, and write the second gray level smaller than the first gray level to a plurality of sub-pixels of the pixel array being charged latter according to the first gate sequence.
Abstract:
A driving method for rendering subpixels of each pixel of a display is provided. The display has a plurality of first pixels and a plurality of second pixels. Each second pixel has a first color subpixel and a second color subpixel, but lacks a third color subpixel. Each first pixel has a second color subpixel and a third color subpixel, but lacks a first color subpixel. The first color subpixel, second color subpixel and third color subpixel are used to represent gray levels of a first color, a second color and a third color respectively. Processes of rendering the subpixels of each pixel are performed based on positions, saturations and brightness of neighboring pixels, such that quality of image displayed on the display could be ensured even though each first pixel lacks the first color subpixel and each second pixel lacks the third color subpixel.
Abstract:
A display substrate structure includes a substrate, at least one chip, and a plurality of conductive lines. A display region and a periphery region are defined on the substrate. The periphery region is disposed around the display region, and the chip is disposed in the periphery region. The conductive lines are disposed in the periphery region and at least between the chip and the display region. Each conductive line has a fan-out portion and at least one adjustment portion. Each adjustment portion is electrically connected to the fan-out portion of the same conductive line. The adjustment portion of each conductive line has a winding wire, and at least one of the adjustment portions of the conductive lines has a straight wire, which is electrically connected to and at least partially overlaps the winding wire of the same conductive line.
Abstract:
A display panel and a driving method thereof are provided. The display panel includes scan lines, data lines, and a pixel array. The scan lines are configured to sequentially transmit scan signals. The data lines are configured to transmit data signals. The pixel array includes a first column pixel unit and a second column pixel unit each of which includes pixel units. Each pixel unit in the first column pixel unit and the second column pixel unit includes sub-pixels with different colors. When the scan signals are sequentially transmitted to the pixel units, the data lines transmit the corresponding data signals to the sub-pixels with the same color in odd-numbered rows of the first column pixel unit and the sub-pixels with the same color in even-numbered rows of the second column pixel unit, such that the sub-pixels have the same polarity based on the corresponding data signals.
Abstract:
A shift register has a first switch, a pull-up circuit, and a pull-down circuit. The first switch receives a first clock signal. The pull-up circuit is configured to turn on the first switch to pull up a voltage level of an output terminal of the shift register. The pull-up circuit has a second switch and a first control circuit. The first control circuit is coupled to a first system power terminal to avoid an excessive voltage difference between two nodes of the first control circuit. The pull-down circuit is configured to pull down the voltage level of the output terminal of the shift register when the first switch is turned off, and further configured to keep a voltage level of a control node of a switch coupled between the output terminal and a second system power terminal at a low voltage.
Abstract:
A solar cell includes a doped layer disposed on a first surface of a semiconductor substrate, a doped polysilicon layer disposed in a first region of a second surface of the semiconductor substrate, a doped area disposed in a second region of the second surface, and an insulating layer covering the doped polysilicon layer and the doped area. The insulating layer has openings exposing portions of the doped polysilicon layer and the doped layer, and the doped polysilicon layer and doped layer are respectively connected to a first electrode and a second electrode through the openings. The semiconductor substrate and the doped layer have a first doping type. One of the doped polysilicon layer and the doping area has a second doping type, and the other one of the doped polysilicon layer and the doping area has the first doping type which is opposite to the second doping type.
Abstract:
A touch panel includes a substrate, a touch device, a white translucent pattern, a color filter pattern and a reflection pattern. The substrate has a transparent region and an opaque region surrounding the transparent region. The touch device is disposed on the substrate in the transparent region. The white translucent pattern is disposed on the substrate in the opaque region. The color filter pattern stacks on the white translucent pattern in the opaque region. The reflection pattern stacks on the color filter pattern in the opaque region.
Abstract:
An array substrate includes a substrate and a plurality of pixel structures. At least one pixel structure includes a gate electrode, a gate insulating layer, a source electrode and a drain electrode, a patterned semiconductor layer, a first passivation layer, and a transparent conductive pattern disposed in a pixel region of the substrate. The patterned semiconductor layer includes a first semiconductor pattern and a second semiconductor pattern. The first semiconductor pattern substantially corresponds to the gate electrode and covers a portion of the source electrode and a portion of the drain electrode. The second semiconductor pattern covers a portion of the drain electrode. The first passivation layer is disposed on the patterned semiconductor layer and has a first opening exposing a portion of the second semiconductor pattern. The transparent conductive pattern is disposed on the first passivation layer and electrically connected to the second semiconductor pattern through the first opening.
Abstract:
A stereoscopic touch display device includes a display panel and a stereoscopic touch panel. The stereoscopic touch panel includes a first substrate, a second substrate, a liquid crystal layer, receiver electrodes, transmitter electrodes, common electrodes, a signal driver, and a common potential providing unit. The liquid crystal layer is disposed between the first and second substrates. The receiver electrodes and the common electrodes are disposed on the first substrate. The transmitter electrodes are disposed on the second substrate. The signal driver is electrically connected to the transmitter electrodes and the receiver electrodes. The signal driver is configured for providing transmitting touch signals to the transmitter electrodes and detecting receiving touch signals generated from coupling capacitances between the receiver electrodes and the transmitter electrodes in sequence. Each of the transmitting touch signals is configured so as to be unable to trigger liquid crystal molecules of the liquid crystal layer.