摘要:
A transmitter (50) includes a low power nonlinear predistorter (58) that inserts predistortion configured to compensate for a memoryless nonlinearity (146) corresponding to gain droop and another memoryless nonlinearity (148) corresponding to a video signal. When efforts are taken to reduce memory effects, such as configuring a network of components (138) that couple to an HPA (114) to avoid resonance frequencies within a video bandwidth (140), high performance linearization at low power results without extending linearization beyond that provided by the memoryless nonlinear predistorter (58). A unadaptable look-up table (370) has address inputs responsive to a magnitude parameter (152) of a communication signal (54), a magnitude derivative parameter (204) of the communication signal (54), and a parameter (346, 366) related either directly or indirectly to battery voltage. The unadaptable look-up table (370) produces a gain-correcting signal (284) that adjusts the gain applied to the communication signal (54) prior to amplification.
摘要:
A transmitting unit (12) clips a communication signal (14) to form a threshold-responsive signal (36, 36′) which includes in-band distortion (40) and out-of-band distortion (38). A portion of the out-of-band distortion (38) is notched within rejection bands (48, 50) adjacent to the communication signal's bandwidth (24). But remaining portions of the out-of-band distortion (38) and portions of the in-band distortion (40) are included with the communication signal (14). The remaining portion of the out-of-band distortion (38) causes the communication signal (14) to be in violation of a spectral mask (30). The mask-violating communication signal 14 with out-of-band distortion (38) and in-band distortion (40) is amplified by an RF power amplifier (22). After amplification, a bandpass filter (92) exhibiting fast rolloff regions (110) attenuates the amplified out-of-band distortion (38) causing compliance with the spectral mask (30).
摘要:
A direct sequence spread spectrum (DSSS) transmitter (12) is configured to form “N” multiple excess-bandwidth channels (44) in an allocated bandwidth (54), where N is an integer. Each excess-bandwidth channel (44) includes a lower rolloff band (40), a minimum-bandwidth channel (38), and an upper rolloff band (42). The N excess-bandwidth channels (44) are placed in the allocated bandwidth (54) so that two of the rolloff bands (40, 42) reside within allocated bandwidth 54 and outside all of minimum-bandwidth channels 38 and so that N−2 of the rolloff bands (40, 42) predominately reside within adjacent minimum-bandwidth channels (38). The excess-bandwidth channels (44) substantially conform to EV-DO standards, and four of the excess-bandwidth channels (44) are supported for each 5 MHz of allocated bandwidth (54).
摘要:
A signal processing system according to various aspects of the present invention includes an excursion signal generator, a scaling system and a filter system. The excursion signal generator identifies a peak portion of a signal that exceeds a threshold and generates a corresponding excursion signal. The scaling system applies a real scale factor to contiguous sets of excursion samples in order to optimize peak-reduction performance. The filter system filters the excursion signal to remove unwanted frequency components from the excursion signal. The filtered excursion signal may then be subtracted from a delayed version of the original signal to reduce the peak. The signal processing system may also control power consumption by adjusting the threshold. The signal processing system may additionally adjust the scale of the excursion signal and/or individual channel signals, such as to meet constraints on channel noise and output spectrum, or to optimize peak reduction. The magnitude threshold, excursion signal and/or individual channel signals may also be adaptively adjusted based on, for example, a channel signal quality such as a noise level specification.
摘要:
A signal processing system according to various aspects of the present invention includes an excursion signal generator, a scaling system and a filter system. The excursion signal generator identifies a peak portion of a signal that exceeds a threshold and generates a corresponding excursion signal. The scaling system applies a real scale factor to contiguous sets of excursion samples in order to optimize peak-reduction performance. The filter system filters the excursion signal to remove unwanted frequency components from the excursion signal. The filtered excursion signal may then be subtracted from a delayed version of the original signal to reduce the peak. The signal processing system may also control power consumption by adjusting the threshold. The signal processing system may additionally adjust the scale of the excursion signal and/or individual channel signals, such as to meet constraints on channel noise and output spectrum, or to optimize peak reduction. The magnitude threshold, excursion signal and/or individual channel signals may also be adaptively adjusted based on, for example, a channel signal quality such as a noise level specification.
摘要:
An RF transmitter (10) includes an RF amplifier (28) that generates an amplified RF signal (36) including a linear RF signal (92) and a spurious baseband signal (94). The spurious baseband signal (94) interacts with bias feed networks (56, 66) to cause the RF amplifier (28) to generate an unwanted RF distortion at or near the allocated RF bandwidth. A baseband compensation signal (98) is generated and equalized in an adaptive equalizer (102) then fed to the RF amplifier (28). A feedback signal (46) is obtained from the RF amplifier (28) and used to drive the adaptive equalizer (102). A feedback loop causes the adaptive equalizer to adjust a baseband signal (24, 32) supplied to the RF amplifier (28) so that the RF distortion is minimized.
摘要:
A digital communications transmitter (100) includes a digital linear-and-nonlinear predistortion section (200) to compensate for linear and nonlinear distortion introduced by transmitter-analog components (120). A direct-digital-downconversion section (300) generates a complex digital return-data stream (254) from the analog components (120) without introducing quadrature imbalance. A relatively low resolution exhibited by the return-data stream (254) is effectively increased through arithmetic processing. Linear distortion is first compensated using adaptive techniques with an equalizer (246) positioned in the forward-data stream (112). Nonlinear distortion is then compensated using adaptive techniques with a plurality of equalizers (226) that filter a plurality of orthogonal, higher-ordered-basis functions (214) generated from the forward-data stream (112). The filtered-basis functions are combined together and subtracted from the forward-data stream (112).
摘要:
A communication and/or amplifier system according to various aspects of the present invention includes an excursion signal generator and a filter system. The excursion signal generator identifies a peak portion of a signal that exceeds a threshold, such as a magnitude threshold. The filter system filters a corresponding excursion signal having a magnitude and waveform corresponding to the portion exceeding the threshold to remove unwanted frequency components from a delayed version of the excursion signal. The filtered excursion signal may then be subtracted from the original signal to reduce the peak. In one embodiment, the communication and/or amplifier system operates in conjunction with signals having multiple channels and subchannels. The system may include a magnitude adjustment system configured to adjust magnitudes of the excursion signal subchannels according to magnitudes of the first signal subchannels. The system may also adjust the excursion signal magnitude in a time division environment according to the magnitude of the original signal in the same time slot.