Alkaline dry battery
    52.
    发明授权

    公开(公告)号:US10516173B2

    公开(公告)日:2019-12-24

    申请号:US15769332

    申请日:2016-10-14

    Inventor: Kenji Yamato

    Abstract: An alkaline dry battery includes a bottomed cylindrical battery case; a positive electrode packed in the battery case and including n hollow cylindrical pellets; a negative electrode disposed in a hollow portion of the pellets; a separator interposed between the positive electrode and the negative electrode; and an alkaline electrolytic solution. The positive electrode includes manganese dioxide and a conductive agent, n is an integer of 1 or more, and an average density of manganese dioxide of the positive electrode is 2.80 to 3.00 g/cm3. The density dc of manganese dioxide in the center portion in the height direction of the positive electrode is 98% or less of an average value de of density of manganese dioxide in each of both end portions.

    Method for manufacturing electrodes using three-dimensional substrate for electrochemical applied products

    公开(公告)号:US10424776B2

    公开(公告)日:2019-09-24

    申请号:US14962275

    申请日:2015-12-08

    Abstract: Using the generally used coating method of an active material paste to a metal foil on a 3DF made the electrode properties instable due to residual air inside of the 3DF, and had the risk of causing micro short circuit of the battery due to metal fine powder and the like adhered to the 3DF and the 3DF exposed to the electrode surface. To solve the above-mentioned, the coating of the active material paste to the 3DF was made into a two-step coating process as shown below. Step one removes the air and fills the paste at the same time by applying the paste flow from one side of the 3DF (the first step coating process). Step two coats a new paste onto the surface of the electrode obtained by step one (the second step coating process). This electrode obtained by the two-step coating process hardly has remaining air amount, can uniformly confine metallic power dust or the 3DF itself inside the electrode (the first step coating process), and in addition to this, has the capability of Li ions freely moving between the electrode surface and the depth portion of the electrode through the opening portion formed on the tip portion of the innumerable protrusions of the 3DF, the micro short circuit of the battery due to Li dendrite was prevented even in repeated charge and discharge.

    ELECTRODE AND LITHIUM-ION BATTERY
    54.
    发明申请

    公开(公告)号:US20190267664A1

    公开(公告)日:2019-08-29

    申请号:US16000597

    申请日:2018-06-05

    Abstract: The present application provides an electrode and a lithium-ion battery. The electrode comprises: a current collector; a first active material layer comprising a first active material; and a second active material layer comprising a second active material; wherein the first active material layer is arranged between the current collector and the second active material layer. The first active material layer is formed on at least one surface of the current collector, and a ratio of an average particle size of the second active material to an average particle size of the first active material is from 1:1 to 40:1. The active material layer is used in the present application to ensure that the lithium-ion battery does not generate a short circuit when pressed by an external force, thereby ensuring the mechanical safety performance of the lithium-ion battery.

    Low cost rechargeable battery and the method for making the same

    公开(公告)号:US10381645B2

    公开(公告)日:2019-08-13

    申请号:US15378200

    申请日:2016-12-14

    Applicant: BETTERGY CORP.

    Abstract: Low-cost electrochemical energy storage devices having electrochemical cells containing zinc electrodes in aqueous electrolytes, which exhibit superior cycle performance, preferably comprise the following elements: (a) a cathode formed of manganese dioxide particles, preferably doped with at least one of magnesium, strontium, barium, calcium, and lanthanum, wherein the manganese dioxide particles preferably form at least one of (1) a delta manganese dioxide structure and (2) a todokorite manganese dioxide structure; (b) an anode formed of particles comprising zinc, wherein the particles are preferably treated with at least one of bismuth, indium, gallium, antimony, and tin; (c) a mixed ion electrolyte solution with a pH greater than or equal to three and less than or equal to seven, wherein the solution preferably comprises at least one monovalent salt and at least one divalent salt; and (d) a mesh as cathode current collector comprising at least one of titanium, stainless steel, tantalum, and niobium, wherein the mesh is preferably coated by an electrically conductive and yet oxidation resistant material comprising but not limited to carbon.

Patent Agency Ranking