Abstract:
The present invention relates to antennas and in particular relates to a multi-resonant antenna. The present invention addresses the requirement for dual frequency antennas operable in two distinct frequency bands. In accordance with a first aspect of the invention, there is provided a multi-resonant antenna comprising first and second conductive elements which antenna elements extend relative to a ground plane; wherein the elements of the antenna structure are adapted to couple between themselves to provide a variable phase velocity for surface currents of the radio signals. A method of operation is also disclosed.
Abstract:
An antenna device having two resonance frequencies wherein two radiating patches are respectively provided on one surface and on the other surface of a dielectric plate which is disposed above a ground plate with a space interposed therebetween. A coupling control capacitor element is connected between these two radiating patches and resonance control capacitor elements are connected between the radiating patches and the ground plate, respectively. Capacitance of the coupling control capacitor element is selected such that a current coupled from one of the two radiating patches to the other and a current supplied from the said one of the radiating patches to the other via the coupling control capacitor element are in opposite phase at the other one of the radiating patches.
Abstract:
An antenna which is adapted to have multiple fundamental resonances includes an outer conductor electrically connected to a feed network and having a generally tubular portion opening through one end to define an internal cavity therein. The antenna also includes an interior conductor electrically connected at a first end to a portion of the outer conductor within the internal cavity. The interior conductor extends through the opening defined in the outer conductor to a second end to thereby define an extended conductor portion which extends beyond the outer conductor. The antenna also includes decoupling means for electrically decoupling the extended conductor portion of the interior conductor from the antenna for signals having frequencies within the upper frequency band. In one embodiment, the internal conductor portion has a predetermined electrical length equal to an odd multiple of a quarter wavelength of a signal having a frequency in the upper frequency band of the antenna. Thus, the extended conductor portion is effectively electrically decoupled from the antenna for signals having frequencies within the upper frequency band.
Abstract:
A three-wave antenna for vehicles which includes a monopole antenna element which has an electrical length of approximately 1/4 of the wavelength in the FM broadcast band along with a double sleeve used to prevent current flow and with a second double sleeve used for phase adjustment that are installed coaxially with the antenna element. The positional relationships between the inner and outer cylinders of each one of the first and second double sleeves relative to the antenna element are respectively specified. In addition, an antenna attachment which has a capacitive reactance and is installed at the base of the antenna element so that it cancels the inductive reactance of the antenna and causes the impedance of the antenna to approach a prescribed value is employed together with a wave splitter which includes a high pass filter that has a double tuning function with respect to the inductive reactance and the capacitive reactance and a low pass filter that separates the AM/FM broadcast band signals from the telephone band.
Abstract:
An antenna element including a loading coil is telescopically extendable and retractable from within a housing tube. A characteristic impedance of a transmission line from a lower end part of the antenna element to a cable is equal to one of a cable. A part of the loading coil is reinforced. A branching filter, which is operatively connected between the antenna and a communication device using a different frequency band, suppresses a mutual interference between signals for the communication device. An antenna circuit, which is operatively connected between the antenna or a branching filter and the communication device, converts an impedance of a lower part in a frequency band, and reduces a loss due to a capacitive antenna impedance.
Abstract:
A multi-frequency antenna to be used commonly for reception of multiple different frequencies includes first and second rods extendably held by and through a third rod. The first rod is coupled to the second rod via a phase shifter so that when the first and second rods are fully extended, the antenna behaves as a high gain antenna for common use in an AM, FM and car telephone system.
Abstract:
To provide broad bandwidth in a multiple-band directional antenna, the antenna includes an array of parallel horizontal elements, which are: (1) an open-sleeve dipole as the driven element; (2) a trap director element; and (3) trap reflector elements. The driven element includes: (1) a trap central dipole which is center-fed and has sections self-resonant within the bands of 21.0 to 21.45 megahertz and 14.0 to 14.35 megahertz; and (2) two unequal-length sleeves self-resonant at 28.0 to 29.7 megahertz. The director and reflector elements are resonant in the same bands and are spaced and tuned for directivity of the array.
Abstract:
Antenna for operation on a plurality of frequencies, the antenna including apex fed opposing swept elements and a plurality of stubs parallel to a central element, a plurality of capacitors connected between one end of the central element and ends of the stubs, and a coaxial cable connected to the opposing swept elements. Each swept element is of a triangular configuration with a central element running from the apex to the base of the triangle at a substantially perpendicular intersection. A plurality of matching stubs connect from the coaxial fed apex and substantially parallel along the central tube, secured at the other end with clamps or capacitors. Ceramic doorknob capacitors connect between the coaxial fed apex and a free end of the first stub and between the first and second stub ends. A hairpin coil can be utilized between the apex feed and the first capacitor, providing required circuit Q. A matching end can connect across the feedpoint at a common matching stub point for the swept elements. A plurality of apex fed opposing swept elements positioned on a boom and supported by a mast provides a beam antenna when using a driven element and a reflector element, and additionally a director element as desired. The antenna can be structured to operate on a plurality of frequencies such as 20 meters, 15 meters and 10 meters in the amateur radio spectrum or on any other frequencies as desired in the HF or higher spectrum.
Abstract:
For each frequency range, a different signal path is provided between the antenna input and the antenna output. Each path has passive impedance elements which receive the radiant energy and a transistor. Each path may have independent noise matching between the transistor and the passive impedance elements, and/or the operating point of each transistor may be independently adjusted for each path.
Abstract:
A device includes a plurality of antennas, including one or more active antennas, the antennas being configured in one of a plurality of possible configurations to achieve operation in WAN, LTE, WiFi, or WiMax bands, or a combination thereof. In some embodiments, a passive antenna is utilized with lumped loading to fix the antenna tuning state. A primary and auxiliary radiator can be included in the device and configured for WAN/LTE bands, while additional antennas can be incorporated for WiFi and WiMax bands. Various antenna configurations incorporate the antenna having multiple coupled regions.