Swept-source Raman spectroscopy systems and methods

    公开(公告)号:US11307092B2

    公开(公告)日:2022-04-19

    申请号:US16853811

    申请日:2020-04-21

    Abstract: In swept source Raman (SSR) spectroscopy, a swept laser beam illuminates a sample, which inelastically scatters some of the incident light. This inelastically scattered light is shifted in wavelength by an amount called the Raman shift. The Raman-shifted light can be measured with a fixed spectrally selective filter and a detector. The Raman spectrum can be obtained by sweeping the wavelength of the excitation source and, therefore, the Raman shift. The resolution of the Raman spectrum is determined by the filter bandwidth and the frequency resolution of the swept source. An SSR spectrometer can be smaller, more sensitive, and less expensive than a conventional Raman spectrometer because it uses a tunable laser and a fixed filter instead of free-space propagation for spectral separation. Its sensitivity depends on the size of the collection optics. And it can use a nonlinearly swept laser beam thanks to a wavemeter that measures the beam's absolute wavelength during Raman spectrum acquisition.

    Method, system and apparatus for a Raman spectroscopic measurement system

    公开(公告)号:US11280675B2

    公开(公告)日:2022-03-22

    申请号:US16902138

    申请日:2020-06-15

    Applicant: Ruolin Li Yanan Ma

    Inventor: Ruolin Li Yanan Ma

    Abstract: A chip-based planar Raman spectroscopic measurement system is disclosed comprising at least a semiconductor laser as excitation light source, an output waveguide coupling and delivering laser light out of chip, a photo-detector monitoring the laser optical power, an input waveguide coupling signal light to chip, a planar spectrometer comprising Planar Waveguide Grating (PWG) and an array photo-detectors, and control electronics. In some embodiments the PWG is a fixed frequency Arrayed Waveguide Grating (AWG), the laser is frequency-tunable. In other embodiments, the laser has fixed frequency, the PWG or the AWG is frequency tunable. In either case, the frequency tunability will ensure the recapture of the spectral information missed due to the spectral characteristics of the planar waveguide grating such as the channel spacing of the AWG, resulting in high channel count and high-resolution Raman measurement of sufficient spectral range.

    Spectral analysis device
    53.
    发明授权

    公开(公告)号:US11262237B2

    公开(公告)日:2022-03-01

    申请号:US17130256

    申请日:2020-12-22

    Abstract: A spectral analysis device is provided herein. The spectral analysis device includes a first lens, a transmission grating, a lens set and a sensing element. The first lens is configured to receive and converge an incident light beam into a first light beam. The transmission grating is configured to disperse the first light beam into a plurality of second light beams. The lens set is configured to receive the plurality of second light beams. The sensing element includes a substrate and a plurality of pixels. The plurality of pixels is configured to respectively receive the plurality of second light beam. Such structure is used to analyze the spectrum of incident light.

    Color dispersion apparatus and spectrometer

    公开(公告)号:US11256012B2

    公开(公告)日:2022-02-22

    申请号:US16483910

    申请日:2019-02-27

    Abstract: The present disclosure relates to a dispersion apparatus. The dispersion apparatus may include an optical substrate; a grating layer on a first side of the optical substrate; and a light outlet layer on a second side of the optical substrate, the second side opposite the first side of the optical substrate. The grating layer is configured to perform dispersion of incident light into first-order diffracted beams having target wavelengths and transmit the first-order diffracted beams into the optical substrate, and wherein a diffraction angle of each of the first-order diffracted beams having the target wavelengths is smaller than a total reflection angle between the optical substrate and air. The light outlet layer is configured to extract the first-order diffracted beams having the target wavelengths in the optical substrate.

    SPECTRAL ANALYSIS DEVICE
    59.
    发明申请

    公开(公告)号:US20210396578A1

    公开(公告)日:2021-12-23

    申请号:US17130256

    申请日:2020-12-22

    Abstract: A spectral analysis device is provided herein. The spectral analysis device includes a first lens, a transmission grating, a lens set and a sensing element. The first lens is configured to receive and converge an incident light beam into a first light beam. The transmission grating is configured to disperse the first light beam into a plurality of second light beams. The lens set is configured to receive the plurality of second light beams. The sensing element includes a substrate and a plurality of pixels. The plurality of pixels is configured to respectively receive the plurality of second light beam. Such structure is used to analyze the spectrum of incident light.

    Spectrophotometer calibration methods and systems

    公开(公告)号:US11181422B2

    公开(公告)日:2021-11-23

    申请号:US17050678

    申请日:2019-04-23

    Abstract: A method of calibrating a spectrophotometer comprising a flash lamp. The method comprises receiving light from the flash lamp at a monochromator of the spectrometer, wherein the flash lamp is a short arc noble gas flash lamp with transverse or axially aligned electrodes; configuring the monochromator to progressively transmit the received light at each of a plurality wavelengths of a selected range of wavelengths, wherein the range of wavelengths is associated with a wavelength feature according to a known spectral profile of the flash lamp, and wherein the wavelength feature is a self-absorption feature; and determining a spectrum of the flash lamp, wherein the spectrum comprises a corresponding power or intensity value for each of the plurality of wavelengths. The method further comprises determining a wavelength calibration error value for the wavelength feature by comparing the spectrum with a segment of a predetermined reference spectrum associated with the flash lamp, wherein the segment of the predetermined reference spectrum includes one or more wavelengths associated with the self-absorption feature; and calibrating the spectrophotometer based on the wavelength calibration error value.

Patent Agency Ranking