Abstract:
Electrical power is provided to power consuming, heat-exhausting devices by multiple gas-fueled electrical power sources located near such devices. Exhaust heat from such devices is utilized as intake cooling air for the gas-fueled power sources, thereby excluding them from cooling capacity requirements. The gas piping delivering gas to gas-fueled power sources is positioned so as to be within hot aisles comprising exhaust heat. The gas piping is located up high for lighter than air gasses and near the floor for heavier than air gasses, with leak detection located nearby. Additionally, gas piping is externally coated with material that visually indicates a leak. By locating gas piping in the hot aisle, exhausted heat increases temperature and, thereby, pressure of the gas, resulting in more efficient gas distribution through the piping and preventing valve freezing. Furthermore, the gas piping is located after potential ignition sources in the airstream.
Abstract:
A circuit board assembly including a heating device operated during cold boot startup includes a circuit board having a computer component. A thermal transfer device connected to the circuit board assembly acts when the computer component is operating to remove heat generated by the computer component. A heating device operates to heat the thermal transfer device. A field programmable gate array acts to energize the heating device when a temperature defining a cold startup condition at the computer component or the thermal transfer device is sensed. The thermal transfer device when heated by the heating device heats the computer component to greater than the temperature of the cold startup condition. A control device connected to the heating device provides an operational mode of the heating device.
Abstract:
A cooling management system including component racks, a cooling system, pressure measurement devices, and a computing system within a structure. Each component rack includes an exothermic apparatus. The structure includes warm air aisle spaces and cold air aisle spaces located between the component racks. The cooling system feeds cold air into each cold air aisle space. The cold air flows through the component racks resulting in displacement of warm air from each exothermic apparatus. The warm air flows into the warm air aisle spaces and is directed back to the cooling system. The pressure measurement devices measure differential pressure values between the cold air aisle spaces and the warm air aisle spaces. The computing system monitors the differential pressure values, perform calculations associated with the differential pressure values, and control a fan speed of at least one fan within the cooling system based on the calculations.
Abstract:
A method is provided which includes providing a heat exchanger door that includes a door assembly spanning at least a portion of the air inlet or outlet side of an electronics rack. The door assembly includes an airflow opening which facilitates air ingress or egress of airflow through the electronics rack. The door assembly further includes an air-to-coolant heat exchanger and a structural support. The heat exchanger is disposed so that airflow through the airflow opening passes across the heat exchanger. The heat exchanger includes a heat exchanger core and a heat exchanger casing coupled to the core. The core includes at least one coolant-carrying channel which loops through the casing. The structural support is attached to the heat exchanger casing to define with the casing a tubular door support structure. The looping of the coolant-carrying channel(s) through the heat exchanger casing resides within the tubular door support structure.
Abstract:
A module for use with an expandable wedge clamp assembly in a chassis channel is provided. The module comprises a first side, a second side, a first extension attached to the first side, and a second extension attached to the second side. The first extension and the second extension are flexible. When the wedge clamp assembly is expanded, the first extension and the second extension flex from a first position to a second position. When the wedge clamp is returned from the expanded position to a relaxed position, the first extension and the second extension return from the second position to the first position.
Abstract:
To cool heat-emitting electronic components, a compact, non-moving-parts compressor, an evaporator in juxtaposition to the electronic components and a condenser are mounted as a unit, preferably within a vacuum can. A heat exchanger is mounted external to the can but in proximity to the condenser. The foregoing comprise a unit which may be detachably connected to a host pump and heat exchanger. The unit may be removed from the system of which it is a part for upgrade and maintenance. All its components are thermally isolated from the ambient atmosphere to prevent water vapor condensation corrosion.
Abstract:
The present invention provides a thermal energy management architecture for a functioning system of electronic components and subsystems comprising a hierarchical scheme in which thermal management components are: (i) operatively engaged with individual portions of the system of electronic components and subsystems, in multiple defined levels and (ii) substantially only thermally driven, i.e., heat transfer devices that have no moving parts and require no external power for their operations. In one embodiment thermal management devices and technologies are divided into five separate levels within a functioning electronics system. In another embodiment, a sixth level is provided for bypassing one or more of the five levels.
Abstract:
A thermal control method and apparatus flows refrigerant of a vapor compression system through a plate of an avionics pod so as to provide a compact and efficient cooling technique for aircraft performing a variety of missions. The plate can serve as an evaporator in a heat pump loop or a heat exchanger in a pumped coolant loop. As a result, the same components can be used for convection cooling and compressor-assisted cooling. At lower temperatures, the pump is operational whereas under less favorable conditions the compressor is operable. A bypass can be provided to provide thermal control where ambient temperature is excessively low. A water boiler can also be utilized when, for short periods, the ambient temperature is higher than the desired temperature for the electronics package.
Abstract:
A mounting assembly for power semiconductors comprises a plurality of modules (20) arranged in a symmetrical arrangement around a central axis. Each module has one or more heat sink substrate surfaces (201,203) for the mounting of semiconductor components (205) and an internal passage (202) for passing a fluid cooling medium therethrough in order to cool the semiconductor components. The assembly may comprise a prismatic body (24) providing the substrate surfaces (243).
Abstract:
This invention relates to an air-water heat exchanger with an exchanger unit and a blower contained in a housing, which can be placed on the cover of a control box or the like and which is provided on the side facing the cover with an inlet and an outlet opening, which are aligned with corresponding openings in the cover of the control box or the like. By a particular routing of the air in the area of the inlet and outlet openings of the exchanger unit, even in case of leakage of the exchanger unit, no water can come out of the inlet and/or outlet openings and reach the control box or the like.