Abstract:
A piezoelectric drive device includes piezoelectric vibration modules that each include a vibration portion and a transmission unit abutting a driven portion and transmitting longitudinal vibration in an alignment direction of the vibration portion with the driven portion and bending vibration which is a composite of the longitudinal vibration and lateral vibration of the vibration portion intersecting the alignment direction to the driven portion and a controller controlling the modules. The controller controls the modules in a first drive mode wherein the transmission portions of all the modules are driven to perform the bending vibration in a first direction and a second drive mode wherein the transmission portions of some of the modules are driven to perform the bending vibration in the first direction and the transmission portions of other modules are driven to perform the longitudinal or bending vibrations in a second direction opposite the first direction.
Abstract:
Provided is a vibration wave motor including: a vibrator; a pressurizing member configured to pressurize the vibrator against a friction member; a holding member configured to hold the vibrator; and a buffering member provided between the vibrator and the holding member. The vibrator and the friction member are moved relatively to each other in a relative movement direction by vibration of the vibrator, and the holding member holds the vibrator in such a manner that an extending part extending in a pressurizing direction of the pressurizing member sandwiches the vibrator and the buffering member.
Abstract:
Disclosed herein is a micro stage using a piezoelectric element that can be reliably operated even in a vacuum environment. In a particle column requiring a high precision, for example, a microelectronic column, the micro stage can be used as a stage with micro or nano degree precision for alignment of parts of the column, or for moving a sample, and so on.
Abstract:
A motor includes a vibrator, a plurality of pressing members that presses the vibrator onto a contacting member in contact with the vibrator, a transmission member that transmits pressing force, which is applied by the plurality of pressing members, to the vibrator, a first holding member that holds the vibrator, a second holding member that holds the transmission member, and a coupling member that couples the first holding member to the second holding member. The vibrator and the contacting member move relatively by vibrations that occur in the vibrator. The vibrator includes a protruding part that is provided on a surface opposite to a surface on a transmission member side. The pressing members are arranged separately to surround the protruding part. The coupling member is arranged at a position closer to the protruding part than the pressing members.
Abstract:
A piezoelectric actuator that may include a monolithic frame having an integral bias band that provides a resilient restoring force between a first contact surface and a second contact surface of the actuator that may be used to rotate an adjustment shaft. In some cases, a preload mechanism may also be included with the frame. Such piezoelectric actuators may be used for adjustable optical mounting devices such as optical mounting devices.
Abstract:
There is provided a vibration generating device including: a housing having an internal space; a first vibrating part having one end which is fixed to one end of the housing to be a fixed end and the other end which is a free end; a second vibrating part disposed to face the first vibrating part and having one end which is fixed to the other end of the housing to be a fixed end and the other end which is a free end; and a mass body having one end which is fixed to the free end of the first vibrating part and the other end which is fixed to the free end of the second vibrating part to be vibrated vertically by the first and second vibrating parts.
Abstract:
A motion control system that includes a base, a stage supported by the base and movable with respect to the base, and a motor coupled to the base and operable to move the stage. The motor includes a mounting base arranged to connect the motor to the base, a friction pad engageable with the stage, and a coupling portion including a first end connected to the mounting base and a second end. The friction pad is connected to the coupling portion between the first end and the second end. A piezoelectric element is disposed between the mounting base and the second end and is operable in response to an electrical signal to move the friction pad and the stage. A mounting screw is accessible from an exterior of the base and engages the coupling portion. The mounting screw is the sole attachment mechanism between the motor and the base.
Abstract:
A supporting portion disposed in parallel to a joint portion to which a vibrating body capable of generating a bending vibration is jointed and configured to support the vibrating body and the joint portion is provided, and the joint portion and the supporting portion are coupled with a plurality of coupling portions. The supporting portion has rigidity higher than that of the joint portion.
Abstract:
An oscillatory wave motor includes an oscillator having an oscillation body and an electro-mechanical energy-converting element, and a flexible heat-conducting member configured to dissipate heat generated by the oscillatory wave motor. The oscillatory wave motor drives a moving body in contact with a contact portion formed in the oscillation body by an elliptical movement of the oscillator, and the heat-conducting member is provided in addition to a heat-conducting path that conducts heat generated by the oscillatory wave motor through an oscillator supporting member that supports the oscillator or a heat-conducting path that conducts heat through the moving body.
Abstract:
There is provided a vibration generating apparatus including: a housing having an internal space; an elastic member having an edge part fixedly attached to the housing; a piezoelectric element fixedly attached to a lower surface of a central portion of the elastic member; and a mass body fixedly attached to an upper surface of the central portion of the elastic member.