Abstract:
A method and apparatuses for power regulation using an extended current limit are disclosed. The power regulator detects an occurrence of an output current of the regulator exceeding a first current limit, triggers an extended current limit timer based on the detected occurrence, regulates the output current according to a second current limit higher than the first current limit based on a duration of the extended current limit timer, and regulates the output current according to the first current limit based on an expiration of the duration of the extended current limit timer.
Abstract:
A processor system includes first and second regulators for regulating an adjusted supply voltage. In one embodiment, the regulator system comprises a digital low-dropout (DLDO) control system comprising first and second regulators that generate a plurality of control signals to regulate an adjusted power supply voltage and that generate a charge when a droop level falls below a droop threshold value. The first regulator implements a first control loop and the second regulator implements a second and much faster acting control loop. A supply adjustment block with the two regulators and control loops are provided for each processor core allowing different cores to have different regulated supply levels all based on one common supply.
Abstract:
A voltage regulator circuit is provided in which voltage overshoots are quickly dissipated using a discharge path which is connected to an output of the voltage regulator. Circuitry for controlling the discharge path is provided using internal currents of an error amplifier to provide a space-efficient and power-efficient design with a fast response. Moreover, hysteresis can be provided to avoid toggling between discharge and no discharge, and to avoid undershoot when discharging the output. A digital or analog signal is set which turns the discharge transistor on or off. A current pulldown may be arranged in the discharge path.
Abstract:
A power control circuit includes: a differential voltage monitor configured to monitor a differential voltage between a first voltage and a second voltage, and control a switching element to be turned on and off, wherein the differential voltage monitor controls the switching element in such a manner that in a case where the differential voltage is increased, when the differential voltage is lower than a first reference voltage, the switching element is turned off, and when the differential voltage is equal to or higher than the first reference voltage, the switching element is turned on, and in a case where the differential voltage is decreased, when the differential voltage is higher than a second reference voltage, the switching element is turned on, and when the differential voltage is equal to or lower than the second reference voltage, the switching element is turned off.
Abstract:
A voltage regulator is provided which can suppress an occurrence of overshooting in an output voltage at the time of starting a power source with a source voltage or the like. The voltage regulator includes an error amplifier circuit, an overshooting control circuit that is connected to the gate of an output transistor, and an ON/OFF circuit that controls ON and OFF states of at least the error amplifier circuit. Here, the ON/OFF circuit controls the overshooting control circuit so as to turn on the output transistor when a predetermined time passes after at least the error amplifier circuit is turned on at the time of starting the voltage regulator.
Abstract:
A hybrid voltage regulator includes a shunt circuit, a shunt feedback circuit, a pass circuit, and a bias controller. The bias controller is configured to control the pass circuit. The hybrid voltage regulator may also include a current source. This hybrid voltage regulator reduces current consumption at low load conditions (improving power efficiency and battery life, particularly for CMOS based regulators), and also provides wideband power supply rejection and fast transient response.
Abstract:
Multi-stage amplifiers, such as linear regulators, configured to provide a constant output voltage subject to load transients, are described. The multi-stage amplifier comprises a first amplification stage which activates or deactivates a first output stage in response to an input voltage at an input node. The first output stage is configured to source a current at an output node of the multi-stage amplifier from a high potential, when activated. Furthermore, the multi-stage amplifier comprises a second amplification stage configured to activate or to deactivate a second output stage in response to the input voltage at the input node. The second output stage is configured to sink a current at the output node of the multi-stage amplifier to a low potential, when activated. The first amplification stage and the second amplification stage are configured to activate the first output stage and the second output stage in a mutually exclusive manner.
Abstract:
Provided is a voltage regulator including a clamp circuit capable of protecting a gate of an output transistor without limiting a drivability of the output transistor. The voltage regulator includes a level shift circuit having an input terminal connected to the gate of the output transistor and an output terminal connected to an input of the clamp circuit. The clamp circuit is controlled by an output voltage of the level shift circuit.
Abstract:
A voltage to current conversion circuit is described. The circuit comprises a first differential amplifier for receiving an input voltage and producing an output voltage, and a second amplifier for converting the output voltage of the first amplifier to a current. The transfer function of the voltage to current conversion circuit is proportional to an exponential function that depends on the input voltage. The circuit is temperature and process independent. In a first preferred embodiment, the first amplifier comprises a first transistor for receiving an input voltage at its base terminal, a temperature dependent current source coupled to the emitter of the first transistor, and a positive voltage supply coupled to the collector through a diode coupled transistor, and a second transistor paired with the first transistor and having a base terminal coupled to an input voltage terminal, an emitter coupled to a temperature dependent current source, and a collector coupled to a voltage supply. The output voltage is a differential signal taken from the collector terminals to the second amplifier, which comprises a third transistor coupled to a fixed current source, the base terminal for receiving the voltage output of the first amplifier, and an emitter coupled to a fourth transistor's emitter, the fourth transistor receiving the output voltage of the first stage at its base terminal, and the collector providing an output terminal. A feedback circuit is coupled to the emitters of the transistors of the third and fourth circuits and to the collector of a fifth transistor, the feedback circuit providing negative feedback to limit the current available at the output when the current through the feedback circuit exceeds a predetermined limit.
Abstract:
A current limiting switching circuit which has general application and which comprises a photoresponsive semiconductor circuit activated by a light emitting diode. A semiconductor device is included for regulating the base drive of a transistor in the photoresponsive semiconductor circuit to maintain a constant collector current flow therein.