Abstract:
A system and method are presented for use in the object reconstruction. The system comprises an illuminating unit, and an imaging unit (see FIG. 1). The illuminating unit comprises a coherent light source and a generator of a random speckle pattern accommodated in the optical path of illuminating light propagating from the light source towards an object, thereby projecting onto the object a coherent random speckle pattern. The imaging unit is configured for detecting a light response of an illuminated region and generating image data. The image data is indicative of the object with the projected speckles pattern and thus indicative of a shift of the pattern in the image of the object relative to a reference image of said pattern. This enables real-time reconstruction of a three-dimensional map of the object.
Abstract:
A system is presented for collecting and concentrating light from a moving light source (e.g. the Sun). The system comprises at least one anamorphic optical element, defining an optical axis and a projection region and having a predetermined effective aperture which defines primary and secondary axes. The effective aperture is configured for collection of optical radiation arriving from a predetermined solid collection angle defining a first range of angles with respect to a plane spanned by said optical and primary axes. The anamorphic optical element is configured such that light passing through said effective aperture within a predetermined first range of angles within said predetermined solid collection angle is concentrated onto at least a part of said projection region. At least one receiver aperture is defined by at least a part of said projection region.
Abstract:
An optical system and method are presented to produce a desired illuminating light pattern. The system comprises a light source system configured and operable to produce structured light in the form of a plurality of spatially separated light beams; and a beam shaping arrangement. The beam shaping arrangement is configured as a diffractive optical unit configured and operable to carry out at least one of the following: (i) combining an array of the spatially separated light beams into a single light beam thereby significantly increasing intensity of the illuminating light; (ii) affecting intensity profile of the light beam to provide the illuminating light of a substantially rectangular uniform intensity profile.
Abstract:
A phase-adjusting element configured to provide substantially liquid-invariant extended depth of field for an associated optical lens. One example of a lens incorporating the phase-adjusting element includes the lens having surface with a modulated relief defining a plurality of regions including a first region and a second region, the first region having a depth relative to the second region, and a plurality of nanostructures formed in the first region. The depth of the first region and a spacing between adjacent nanostructures of the plurality of nanostructures is selected to provide a selected average index of refraction of the first region, and the spacing between adjacent nanostructures of the plurality of nanostructures is sufficiently small that the first region does not substantially diffract visible light.
Abstract:
An optical arrangement is provided for use in imaging with a large depth of focus. The optical arrangement comprises an aperture unit, and a replication unit. The replication unit is configured for producing a plurality of replicas of an input optical field passed through the aperture unit such that the replicas include at least two replicas that are of substantially the same phase distribution and are created at different regions of the aperture unit plane.
Abstract:
An electronic device and method are presented for creating at least one predetermined stimulus at the device output. The device comprises an electrically non-conductive holey structure (110) carrying at least two active electrically conductive cores (C1, C2) electrically insulated from one another along their lengths, for supplying a potential difference (V1, V2) between them, and at least one stimulus creator (S1) configured to be affected by said potential difference to provide a predetermined output of the device.
Abstract:
A method for mapping includes projecting a primary speckle pattern from an illumination assembly into a target region. A plurality of reference images of the primary speckle pattern are captured at different, respective distances from the illumination assembly in the target region. A test image of the primary speckle pattern that is projected onto a surface of an object in the target region is captured and compared to the reference images so as to identify a reference image in which the primary speckle pattern most closely matches the primary speckle pattern in the test image. The location of the object is estimated based on a distance of the identified reference image from the illumination assembly.
Abstract:
An imaging arrangement and method for extended the depth of focus are provided. The imaging arrangement comprises an imaging lens having a certain affective aperture, and an optical element associated with said imaging lens. The optical element is configured as a phase-affecting, non-diffractive optical element defining a spatially low frequency phase transition. The optical element and the imaging lens define a predetermined pattern formed by spaced-apart substantially optically transparent features of different optical properties. Position of at least one phase transition region of the optical element within the imaging lens plane is determined by at least a dimension of said affective aperture.
Abstract:
A method for mapping includes projecting a primary speckle pattern from an illumination assembly into a target region. A plurality of reference images of the primary speckle pattern are captured at different, respective distances from the illumination assembly in the target region. A test image of the primary speckle pattern that is projected onto a surface of an object in the target region is captured and compared to the reference images so as to identify a reference image in which the primary speckle pattern most closely matches the primary speckle pattern in the test image. The location of the object is estimated based on a distance of the identified reference image from the illumination assembly.
Abstract:
An image projection system and method are presented to project an image on at least one of first and second projection planes. The system comprises a light source system including one or more light source assemblies operable to generate light of one or more predetermined wavelength range; a spatial light modulator (SLM) system including one or more SLM units operable to spatially modulate input light in accordance with an image to be directly projected or viewed; and two optical assemblies associated with two spatially separated light propagation channels, respectively, to direct light to, respectively, the first and second projection planes with desired image magnification. The system is configured to selectively direct the input light propagating towards the SLM system or light modulated by the SLM system to propagate along at least one of the two channels associated with the first and second projection planes, respectively.