Abstract:
A gas turbine engine component includes a wall having first and second wall surfaces, a cooling hole extending through the wall and a convexity. The cooling hole includes an inlet located at the first wall surface, an outlet located at the second wall surface, a metering section extending downstream from the inlet and a diffusing section extending from the metering section to the outlet. The diffusing section includes a first lobe diverging longitudinally and laterally from the metering section and a second lobe adjacent the first lobe and diverging longitudinally and laterally from the metering section. The convexity is located near the outlet.
Abstract:
A method of manufacturing a replacement body for a component is provided. The method includes the steps of: a) additively manufacturing a crucible for casting of the replacement body; b) solidifying a metal material within the crucible to form a directionally solidified microstructure within the replacement body; and c) removing the crucible to reveal the directionally solidified replacement body.
Abstract:
A method of manufacturing a component includes additively manufacturing a crucible; directionally solidifying a metal material within the crucible; and removing the crucible to reveal the component. A component for a gas turbine engine includes a directionally solidified metal material component, the directionally solidified metal material component having been additively manufactured of a metal material concurrently with a core, the metal material having been remelted and directionally solidified.
Abstract:
A gas turbine engine component includes an airfoil extending radially from a root section to a tip section and having a trailing edge cooling passageway and first, second and third flow dividers in the cooling passageway. The first, second and third flow dividers have longitudinal axes that are angled based upon a position of the flow divider relative to the tip section of the airfoil.
Abstract:
One embodiment includes a method to regenerate a component (10). The method includes additively manufacturing a component (10) to have voids greater than 0 percent but less than approximately 15 percent in a near finished shape. The component (10) is encased in a shell mold (22). The shell mold (22) is cured. The encased component (10) is placed in a furnace and the component (10) is melted. The component (10) is solidified in the shell mold (22). The shell mold (22) is removed from the solidified component (10).
Abstract:
A method for forming a diffusion cooling hole in a substrate includes removing material from the substrate to form a metering section having an inlet on a first side of the substrate and removing material from the substrate to form a diffusing section that extends between the metering section and an outlet located on a second side of the substrate generally opposite the first side. The method also includes forming a feature on a substrate surface within one of the metering section and the diffusing section. Forming the feature includes depositing a material on the substrate surface and selectively heating the material to join the material with the substrate surface and form the feature.
Abstract:
A fluid supply system for providing a turbomachine fluid to a component of a gas turbine engine is disclosed. The fluid supply system includes a fluid container, a moveable barrier, and an airbag. The moveable barrier fluidly divides the fluid container into a first portion and a second portion. The moveable barrier is moveable between a flow-permitting position and a flow-restricting position. The turbomachine fluid experiences a circulating flow between the component and the second portion of fluid container when the moveable barrier is in the flow-permitting position. The circulating flow is at least partially impeded by the moveable barrier when the moveable barrier is in the flow-restricting position. The airbag is positioned within the first portion of the fluid container. The airbag is selectively operable to move the moveable barrier from the flow-permitting position to the flow-restricting position.
Abstract:
A fluid system for use with a gas turbine engine includes a reservoir having a reservoir inlet and a reservoir outlet and includes a supply assembly positioned in the reservoir. The supply assembly includes a first passage, a second passage, and a valve disc. The first and second passages are fluidically connected to the reservoir outlet. The valve disc is positioned in the first passage. The valve disc is pivotable about an axis and is weighted to have a center of gravity offset from the axis.
Abstract:
A cooling channel array carried by a component wall of a gas turbine engine is provided. The cooling channel array comprises a diffusion cavity and a metering section. The metering section comprises a main hole and two or more side holes. The side holes may be separate from the main hole or may branch off of the main hole. The diffusion cavity may incorporate a lobed configuration to help diffuse cooling fluid as it exits the cooling channel array.
Abstract:
A cooling system for a gas turbine engine comprises a passage capable of receiving cooling air, a compartment radially adjacent thereto and axially aligned therewith, an opening therebetween, a valve within the opening, and a heat exchanger received in the compartment. The valve is moveable between a maximum open position and a minimum open position for increasing or decreasing airflow from the passage into the compartment. At the valve minimum open position, a leakage path is provided between the passage and the compartment, whereby cooling air is capable of passing from the passage to the compartment and toward the heat exchanger at all valve positions. A gas turbine engine is also disclosed.