Abstract:
An organic light emitting diode display device includes a substrate, a plurality of organic light emitting diodes on the substrate, a thin film encapsulation layer on the organic light emitting diodes, and at least one sensor on the thin film encapsulation layer, the sensor including a sensing gate electrode, an oxide semiconductor layer overlapping the sensing gate electrode, a sensing source electrode connected to the oxide semiconductor layer, and a sensing drain electrode spaced apart from the sensing source electrode and connected to the oxide semiconductor layer.
Abstract:
Provided is an electronic component including a pad region including a plurality of pads extending along corresponding extension lines and arranged in a first direction, and a signal wire configured to receive a driving signal from the pad region, wherein the plurality of pads include a plurality of first pads arranged continuously and a plurality of second pads arranged continuously, and extension lines of the plurality of first pads substantially converge into a first point and extension lines of the plurality of second pads substantially converge into a second point different from the first point.
Abstract:
Provided is a display panel including first bypass wirings electrically coupling main pixel circuits in a first direction, and bypassing along one side of a pixel group at an outermost portion of the component area, horizontal wirings electrically coupled to the main pixel circuits and auxiliary pixel circuits and extending in a first direction, and extension wirings between two pixel groups adjacent to each other along the first direction, and extending in the first direction, wherein the extension wirings are electrically coupled to the horizontal wirings included in each of the two pixel groups, and the number of the extension wirings is less than the number of the horizontal wirings.
Abstract:
Provided is an electronic component including a pad region including a plurality of pads extending along corresponding extension lines and arranged in a first direction, and a signal wire configured to receive a driving signal from the pad region, wherein the plurality of pads include a plurality of first pads arranged continuously and a plurality of second pads arranged continuously, and extension lines of the plurality of first pads substantially converge into a first point and extension lines of the plurality of second pads substantially converge into a second point different from the first point.
Abstract:
According to an embodiment, a scan driver includes a plurality of stages. An output controller of each of the stages includes a pull-down transistor, and the pull-down transistor includes a first gate and a second gate, where the first gate is electrically connected to a third control node or a node electrically connected to the third control node, and the second gate is connected to a third voltage input terminal to which a third voltage of a second voltage level is applied.
Abstract:
A display apparatus includes a substrate including a display area for displaying an image, a first thin film transistor in the display area and including a first semiconductor layer having a silicon semiconductor and a first gate electrode insulated from the first semiconductor layer, a first interlayer insulating layer covering the first gate electrode and having a first contact hole extending therethrough, and a second thin film transistor on the first interlayer insulating layer and including a second semiconductor layer having an oxide semiconductor and a second gate electrode insulated from the second semiconductor layer. A portion of the second semiconductor layer extends into a first contact hole and is electrically connected to the first semiconductor layer.
Abstract:
A display panel includes a substrate having a first area and a second area, a non-display area surrounding the first area and the second area, and a display area surrounding the non-display area, a plurality of display elements arranged in the display area, and a plurality of signal lines electrically connected to the plurality of display elements, wherein the plurality of signal lines includes a first signal line and a second signal line neighboring each other and extending in a first direction, wherein the first signal line bypasses in the non-display area along a first side of the first area, and the second signal line bypasses in the non-display area along a second side of the first area, and wherein the first and second signal lines are asymmetrical with respect to a virtual central line through a center of the first area in the first direction.
Abstract:
A display apparatus includes a substrate including a display area; a first thin film transistor arranged on the display area of the substrate and having a first semiconductor layer including a silicon semiconductor and a first gate electrode insulated from the first semiconductor layer by a first gate insulating layer; a second thin film transistor arranged on the display area of the substrate and having a second semiconductor layer including an oxide semiconductor and a second gate electrode insulated from the second semiconductor layer; and a storage capacitor at least partially overlapping the first thin film transistor and having a lower electrode and an upper electrode, wherein the second semiconductor layer and one of the lower electrode and the upper electrode are arranged on a same layer.
Abstract:
A display device including a transmission area, a display area at least partially surrounding the transmission area, and a non-display area between the transmission area and the display area, in which the display device includes a driving voltage line extending in a first direction and arranged in the display area, a data line extending in the first direction and arranged in the display area, an auxiliary data line connected to the data line and extending along an edge of the transmission area in the non-display area, and a conductive pattern arranged in the non-display area and connected to the driving voltage line.
Abstract:
Provided is a display panel including first bypass wirings electrically coupling main pixel circuits in a first direction, and bypassing along one side of a pixel group at an outermost portion of the component area, horizontal wirings electrically coupled to the main pixel circuits and auxiliary pixel circuits and extending in a first direction, and extension wirings between two pixel groups adjacent to each other along the first direction, and extending in the first direction, wherein the extension wirings are electrically coupled to the horizontal wirings included in each of the two pixel groups, and the number of the extension wirings is less than the number of the horizontal wirings.