Abstract:
The subject matter disclosed herein relates in one particular implementation to a method, apparatus, and/or system for transmitting, by a location server, a location identifier to a mobile device. The location identifier may be transmitted from the mobile device to one or more trusted entities. Access to a location estimate of the mobile device may be selectively authorized at least partially in response to a request received at the mobile device from the location server including the location identifier.
Abstract:
A particular method includes receiving, at a secure user plane location (SUPL) server, an indication from a mobile device of one or more transport layer security (TLS) cipher suites supported by the mobile device; determining whether the one or more TLS cipher suites include a TLS pre-shared key (TLS-PSK) cipher suite that is supported by the SUPL server; in response to determining whether the one or more TLS cipher suites include the TLS-PSK cipher suite that is supported by the SUPL server, performing a generic bootstrapping architecture (GBA)-based authentication process to authenticate the mobile device, or determining whether the SUPL server supports a certificate-based authentication method; and in response to determining that the SUPL server supports the certificate-based authentication method, performing the certificate-based authentication method that includes sending a server certificate to the mobile device and receiving a device certificate from the mobile device.
Abstract:
Various methods, apparatuses and articles of manufacture are provided which may be implemented to authenticate the provider of a positioning engine provisioned within a mobile station to enable the positioning engine to obtain and use protected positioning assistance data. In certain examples, a relationship between the provider of a location server and the provider of a positioning engine provisioned within a mobile station may be authenticated, and protected positioning data may be obtained from said positioning engine by said location server.
Abstract:
Disclosed are systems, methods and devices for application of location based services in a venue using mobile centric and network centric positioning techniques. In particular, call message flows are described for specific use cases. In one particular implementation, a system obtains estimated locations of mobile devices to provide location aware content to applications hosted on the mobile devices. In another implementation, a system may gather statistics regarding mobile devices' entry into, departure from or movement within a venue for development of user analytics.
Abstract:
Techniques for initiating and, if desired, modifying location services for Secure User Plane Location (SUPL) and other location architectures are described. To initiate SUPL service, a SUPL Location Platform (SLP) transmits a SUPL initial session message applicable to any service request to a SUPL enabled terminal (SET) and receives in response the service capabilities of the SET. The SLP selects and requests service from the SET consistent with the service capabilities of the SET. The SET may initiate SUPL service by requesting the service capabilities of the SLP. The SET selects and requests service from the SLP that is consistent with the service capabilities received from the SLP. The SET and SLP communicate to determine a position estimate for the SET. The service may be modified before or while communicating between the SET and the SLP to determine a position estimate for the SET.
Abstract:
Systems and methods are presented for discovering a local location server associated with a local provider based on a relationship between the local provider and another regional/global provider. A mobile device discovers the local provider and queries a home location server which returns the address of a regional/global location server associated with the regional/global provider. A mobile device then queries the regional/global location server to discover the local location server and may then access the local location server to obtain location services. The method may be employed with the OMA SUPL location solution wherein the home location server may be an H-SLP and the local and regional/global location servers may be D-SLPs.
Abstract:
Techniques for sending and receiving broadcast information are described. In an aspect, broadcast metadata may be generated for broadcast information and may include location and time criteria used by terminals to filter the broadcast information. Each location and time criterion may include (i) a location criterion given by a target location and a presence or absence requirement and (ii) a time criterion given by a time period in which the location criterion applies. A terminal may receive the broadcast metadata prior to or with the broadcast information, obtain location and time criteria from the broadcast metadata, and filter the broadcast information based on the location and time criteria. The terminal may evaluate each location and time criterion by determining its location within a specified time period and determining whether its location is within or outside a specified target location, as indicated by the presence or absence requirement.
Abstract:
Systems and techniques to determine an approximate location for a mobile device using historic location information. In an aspect, a SUPL Location Platform (SLP), which is a location server in SUPL, may receive data from SUPL Enabled Terminal (SET). The data may include the Multiple Location IDs Parameter. The real time Location ID Parameter may not have a current status. The SLP may determine an approximate position for the SET based on the Multiple Location IDs Parameter data received from the SET. The SLP may then send the approximate position to the SET or a SUPL Agent, or may use the approximate position information in another way.
Abstract:
Techniques for sending and receiving broadcast information are described. In an aspect, broadcast metadata may be generated for broadcast information and may include location and time criteria used by terminals to filter the broadcast information. Each location and time criterion may include (i) a location criterion given by a target location and a presence or absence requirement and (ii) a time criterion given by a time period in which the location criterion applies. A terminal may receive the broadcast metadata prior to or with the broadcast information, obtain location and time criteria from the broadcast metadata, and filter the broadcast information based on the location and time criteria. The terminal may evaluate each location and time criterion by determining its location within a specified time period and determining whether its location is within or outside a specified target location, as indicated by the presence or absence requirement.
Abstract:
A large volume of location related information, e.g., assistance data or location information, is transferred in separate messages between a server and a target by segmenting the location related information into a plurality of messages. If the connection between the server and target is released prior to completion of the transfer of the location related information, the transfer is resumed by sending the remaining messages after connection is reestablished. Each message is sent after receiving an acknowledgement of receipt. Thus, both the server and target can control the flow of the transfer by delaying the sending of one or more messages or delaying the sending of the acknowledgements of receipt.