Abstract:
A supported catalyst system is based on a transition metal carbene including the moiety M1=CR*)2, wherein M1 is the transition metal and R* is hydrogen or a C1-C8 hydrocarbyl. The catalyst system can be supported on a metal oxide support such as silica or the catalyst can be self-supporting. Methods of making the catalyst system can involve precursors based on and/or reacted with aluminum alkyls, halides, and/or alkoxides. Methods of polymerizing cyclic olefins with the catalyst system can obtain polyalkenamers, cyclic olefin polymers, cyclic olefin copolymers, and other metathesis reaction products. The supported catalyst and/or monomer can be recovered and recycled to the polymerization reactor.
Abstract:
This invention relates to a silane-functionalized resin composition having a polymer backbone, wherein the polymer backbone is selected from at least one of C5 homopolymers and copolymer resins, terpene homopolymer or copolymer resins, pinene homopolymer or copolymer resins, C9 homopolymers and copolymer resins, C5/C9 copolymer resins, alpha-methylstyrene homopolymer or copolymer resins, and combinations thereof, and wherein the polymer backbone is substantially free of styrene copolymer; and a silane, where the ratio of the mole percent of the silane to the mole percent of the polymer backbone in the composition is in the amount of 0.04 to 3.0 as determined by H-NMR.
Abstract:
An elastomeric composition and method incorporating a hydrocarbon polymer modifier with improved permanence. The composition comprises elastomer, filler and silane-functionalized hydrocarbon polymer modifier (Si-HPM) made in a pre-reaction adapted to couple the Si-HPM to the elastomer, filler or both, wherein the Si-HPM comprises an interpolymer of monomers chosen from piperylenes, cyclic pentadienes, aromatics, limonenes, pinenes, amylenes, and combinations thereof.
Abstract:
A composition including at least one elastomer, and a hydrocarbon polymer additive having a dicyclopentadiene, cyclopentadiene, and methylcyclopentadiene derived content of about 40 wt % to about 80 wt % of the total weight of the hydrocarbon polymer additive, a weight average molecular weight of about 100 g/mole to about 800 g/mole, and a softening point of about 110° C. to about 150° C. as determined in accordance with ASTM D6090.
Abstract:
A tire tread composition is disclosed. The tire tread composition includes components, by weight of the composition, within the range from: 5 to 75 wt % of a diene elastomer; 0 to 40 wt % of processing oil; 20 to 80 wt % of filler; a curative agent; and 5 to 30 wt % of a propylene-ethylene-diene terpolymer containing from 2 wt % to 40 wt % of ethylene and/or C4-C20 α-olefins derived units, from 0.5 to 10 wt % of diene derived units, and having a heat of fusion, as determined by DSC, of from 0 J/g to 80 J/g.
Abstract:
A polyolefin-polybutadiene block-copolymer and a tire tread composition comprising the polyolefin-polybutadiene block-copolymer, the composition comprising, by weight of the composition, within the range from 15 to 60 wt % of a styrenic copolymer, processing oil, filler, a curative agent, and from 4 to 20 wt % of a polyolefin-polybutadiene block-copolymer, wherein the polyolefin-polybutadiene block-copolymer is a block copolymer having the general formula PO-XL-fPB; where “PO” is a polyolefin block having a weight average molecular weight within the range from 1000 to 150,000 g/mole, the “fPB” is a functionalized polar polybutadiene block having a weight average molecular weight within the range from 500 to 30,000 g/mole, and “XL” is a cross-linking moiety that covalently links the PO and fPB blocks; and wherein the maximum Energy Loss (Tangent Delta) of the immiscible polyolefin domain is a temperature within the range from −30° C. to 10° C.
Abstract:
This invention relates to a process for the preparation of a silica-treated functionalized resin composition comprising the steps of reacting a polymer backbone with a hydrosilylation agent to produce a silane-functionalized resin composition, wherein the polymer backbone is selected from at least one of dicyclopentadiene (DCPD)-based polymers, cyclopentadiene (CPD)-based polymers, DCPD-styrene copolymers, C5 homopolymers and copolymer resins, C5-styrene copolymer resins, terpene homopolymer or copolymer resins, pinene homopolymer or copolymer resins, C9 homopolymers and copolymer resins, C5/C9 copolymer resins, alpha-methylstyrene homopolymer or copolymer resins, and combinations thereof; and mixing the silane-functionalized resin composition with a silica to produce a silica-treated functionalized resin composition.
Abstract:
This invention relates to a dicyclopentadiene (DCPD)-based resin functionalized with groups capable of reacting with silica or carbon black for use in high performance tires and a preferred method of preparing the functionalized resin comprising ruthenium-catalyzed ring-opening cross metathesis. The functionalized resin may comprise the reaction product obtained by contacting a polymer comprising units derived from (DCPD) and a vinyl monomer or vinylene monomer in the presence of a metathesis catalyst, wherein the vinyl monomer or vinylene monomer comprises at least one of the following functional groups: a silyl group, a siloxy group, or an alkoxysilyl group. This invention further relates to a tire tread composition comprising the functionalized resin and which exhibits enhanced durability, traction, handling, and extractability properties.
Abstract:
An elastomeric composition and method incorporating a hydrocarbon polymer modifier with improved permanence. The composition comprises elastomer, filler and silane-functionalized hydrocarbon polymer modifier (Si-HPM) adapted to couple the Si-HPM to the elastomer, filler or both, wherein the Si-HPM comprises an interpolymer of monomers chosen from piperylenes, cyclic pentadienes, aromatics, limonenes, pinenes, amylenes, and combinations thereof. The method comprises melt processing a mixture to form the elastomeric composition in the shape of an article, wherein the mixture comprises elastomer, Si-HPM, silica, bifunctional organosilane crosslinking agent; and curing the elastomeric composition to form the article. Also disclosed are a silylated hydrocarbon polymer modifier coupled with a bifunctional organosilane crosslinking agent, and a silica-coupled hydrocarbon polymer modifier coupled to the silica via the bifunctional organosilane crosslinking agent.
Abstract:
A composition including at least one elastomer, and a hydrocarbon polymer additive having a dicyclopentadiene, cyclopentadiene, and methylcyclopentadiene derived content of about 40 wt % to about 80 wt % of the total weight of the hydrocarbon polymer additive, a weight average molecular weight of about 100 g/mole to about 800 g/mole, and a softening point of about 110° C. to about 150° C. as determined in accordance with ASTM D6090.