Abstract:
Distributed signal field for communications within multiple user, multiple access, and/or MIMO wireless communications. In accordance with wireless communications, a signal (SIG) field employed within such packets is distributed or partitioned into at least two separate signal fields (e.g., SIG A and SIG B) that are located in different portions of the packet. A first of the SIG fields includes information that may be processed and decoded by all wireless communication devices, and a second of the SIG fields includes information that is specific to one or more particular wireless communication devices (e.g., a specific wireless communication device or a specific subset of the wireless communication devices). The precise locations of the at least first and second SIG fields within a packet may be varied, including placing a second of the SIG fields (e.g., including user-specific information) adjacent to and preceding a data field in the packet.
Abstract:
Transmission coordination within multiple user, multiple access, and/or MIMO wireless communications. Within wireless communication systems, there can be various wireless communication devices therein that are not all compliant with a common capability set, communication protocol, communication standard, recommended practice, etc. For example, some communication systems may have some wireless communication devices characterized as ‘legacy’ wireless communication devices, and other wireless communication devices therein may be newer and compliant with newer capability sets, communication protocols, communication standards, recommended practices, etc. In such instances, coordination of transmissions among the various wireless communication devices may be made, when performing simultaneous transmissions, by ensuring that transmissions of devices on different channels is made when aligned on a common boundary of an OFDM symbol. Alternatively, such simultaneous transmissions may be made when offset by some multiple of OFDM symbol duration. When performing non-simultaneous transmissions, transmissions may be made based on channel availability.
Abstract:
A multiservice communication device includes a plurality of transceivers that wirelessly transceive data with a corresponding plurality of networks in accordance with a corresponding plurality of network protocols. A control channel transceiver transceives control channel data with a remote management unit including local control data sent to the management unit and remote control data received from the management unit. A processing module processes the remote control data and generates a least one control signal in response thereto, the at least one control signal for adapting at least one of the plurality of transceivers based on the remote control data.
Abstract:
A wireless communication device includes communication interface configured to receive and transmit signals and a processor configured to generate and process such signals. The communication interface of the wireless communication device is configured to receive a first signal from a first other wireless communication device, and the processor of the wireless communication device is configured to process the first signal to determine one or more concurrent transmission parameters. The processor of the wireless communication device is configured to generate the second signal based on the one or more concurrent transmission parameters and direct the communication interface to transmit the second signal to a second other wireless communication device during receipt of the first signal from the first other wireless communication device. The wireless communication device may be configured to make such concurrent transmissions based on one or more considerations such as the power level of the first signal.
Abstract:
A multiservice communication device includes a plurality of transceivers that wirelessly transceive data with a corresponding plurality of networks in accordance with a corresponding plurality of network protocols. A control channel transceiver transceives control channel data with a remote management unit including local control data sent to the management unit and remote control data received from the management unit. A processing module processes the remote control data and generates a least one control signal in response thereto, the at least one control signal for adapting at least one of the plurality of transceivers based on the remote control data.
Abstract:
A device may use positioning information to increase the efficiency a wireless local area network (WLAN) scanning process. To determine the presence of WLANs within range, a device may determine its own location. For example, the device may determine its own location using a satellite-based navigation system. The device may then determine a wireless scanning strategy based on the determined location. The determination may be further based on connection parameters, such as, channel information, network capabilities, and/or other connection parameters.
Abstract:
Distributed signal field for communications within multiple user, multiple access, and/or MIMO wireless communications. In accordance with wireless communications, a signal (SIG) field employed within such packets is distributed or partitioned into at least two separate signal fields (e.g., SIG A and SIG B) that are located in different portions of the packet. A first of the SIG fields includes information that may be processed and decoded by all wireless communication devices, and a second of the SIG fields includes information that is specific to one or more particular wireless communication devices (e.g., a specific wireless communication device or a specific subset of the wireless communication devices). The precise locations of the at least first and second SIG fields within a packet may be varied, including placing a second of the SIG fields (e.g., including user-specific information) adjacent to and preceding a data field in the packet.
Abstract:
A wireless communication device (e.g., operative within a wireless local area network (WLAN)) coordinates with another wireless communication device to determine which communication parameter(s) to use in at least one FTM frame exchange. In an example of operation, the wireless communication device includes a communication interface and a processor such that the processor receives, via the communication interface, a fine timing measurement (FTM) request frame from the other wireless communication device. The FTM request frame specifies at least one preferred communication parameter for the at least one FTM frame exchange. The processor then determines, based on the FTM request frame, information related to the at least one preferred communication parameter. The wireless communication device generates and transmits a response to the FTM request frame to the other wireless communication device that confirms or overrides the at least one preferred communication parameter.
Abstract:
A management unit manages a plurality of multiservice communication devices capable of communicating via a plurality of networks. The management unit includes a device interface for facilitating a bidirectional data communication with the plurality of multiservice communication devices via a wireless control channel, the bidirectional data communication including outbound control data sent to at least one of the plurality of multiservice communication devices and inbound control data received from at least one of the plurality of multiservice communication devices via either a logical or physical control channel. A network interface receives network resource data from the plurality of networks. A management processing unit includes a local agent that gathers environmental data, wherein the management processing unit processes the inbound control data, the environmental data and the network resource data and that generates the outbound control data in response thereto.
Abstract:
Methods and systems for processing signals in a receiver are disclosed herein and may include updating a plurality of filter taps utilizing at least one channel response vector and at least one correlation vector, for a plurality of received clusters, based on initialized values related to the at least one channel response vector and the at least one correlation vector. At least a portion of the received signal clusters may be filtered utilizing at least a portion of the updated plurality of filter taps. The update may be repeated whenever a specified signal-to-noise ratio (SNR) for the received signal clusters is reached. The initialized values may be updated during a plurality of iterations, and the update may be repeated whenever a specified number of the plurality of iterations is reached.