Abstract:
Apparatuses, systems, and methods for high data mode operation in cellular networks. A UE may determine, for an interface to a high-speed cellular network, a categorization from a plurality of categorizations, determine availability of the high-speed cellular network, and select, based at least in part on the categorization and availability of the high-speed cellular network, the interface for a data connection to the high-speed cellular network. The categorization may be one of expensive or not expensive and/or one of a first level associated with a higher compression codec rate or a second level associated with a lower compression codec rate. The UE may receive, from one of the a low-speed cellular network or the high-speed cellular network, carrier plan information for a cellular data service carrier and analyze the carrier plan information to determine desirability of a switch, e.g., from the low-speed cellular network to the high-speed cellular network.
Abstract:
This disclosure relates to techniques for a wireless device to detect network bandwidth throttling and dynamically select a buffer threshold. The wireless device may establish a wireless link. Data for a downlink stream may be requested when an amount of buffered data for the stream is below a lower buffer threshold, received via the wireless link, and buffered. Data requests for the stream may be stopped when the amount of buffered data for the stream is above an upper buffer threshold. The upper buffer threshold may be selected based on characteristics of the wireless link and the stream. Throughput of the wireless link may also be monitored during multiple time windows, and the wireless device may determine whether the wireless link caps bandwidth below a bandwidth threshold based on the throughput monitoring.
Abstract:
This disclosure relates to techniques for providing a framework for supporting custom signaling between a wireless device and a cellular network. A wireless device and a cellular base station may establish a wireless link. The wireless device and the cellular base station may perform custom signaling in accordance with the custom signaling framework.
Abstract:
Apparatuses, systems, and methods for user equipment (UE) devices to perform more efficient frequency scans for potential base stations. According to techniques described herein, the UE may determine that it does not have cellular service and determine first information based on a last camped cell. A time period during which the first information was acquired may be determined and one or more frequency scans may be performed. The frequency scans may be limited to a set of frequencies based in part on the time period. Thus, if the time period is less than a first value, the set of frequencies may include a first set of frequencies and if the time period is greater than the first value but less than a second value, the set of frequencies may include the first set of frequencies and a second set of frequencies.
Abstract:
A connection with a network that includes a base station (BS) may be established by a user device (UE) via a wireless connection, for conducting communications using semi persistent scheduling (SPS) in a connected discontinuous reception (C-DRX) mode. The SPS transmit periodicity may be adjusted with respect to the SPS activation command and the SPS interval UL (for uplink). Data may then be transmitted during the C-DRX On-Duration periods according to the determined SPS transmit periodicity. In some embodiments, the SPS transmit periodicity is adjusted such that following a first C-DRX On-Duration period when an SPS activation command is received, SPS data transmission occurs a specified number of subframes earlier during each subsequent C-DRX On-Duration period than in the first C-DRX On-Duration period. The SPS data transmission in each subsequent C-DRX On-Duration period may take place as soon as the UE device wakes up during the On-Duration period.
Abstract:
Apparatuses, systems, and methods for user equipment (UE) devices to perform a radio access technology (RAT) upgrade. A UE may initiate a background scan to upgrade RAT while camped on a first system in response to an occurrence of a first condition. The first system may include a first PLMN that operates according a first RAT. The UE may determine a second system operates according to a second RAT that provides upgraded service as compared to the first RAT. The second system may be included in one or more systems found during the background scan. The UE may attempt to register on the second system based on the second PLMN operating according to the second RAT. The first and second PLMNs may each have an associated operator preference and the first PLMN may be preferred over the second PLMN.
Abstract:
Methods, apparatuses and computer readable media are described that configure wireless circuitry of a wireless communication device. The wireless communication device establishes a connection to a first wireless network using first and second receiving signaling chains. In response to detecting a radio frequency tune-away event, the wireless communication device reconfigures only one of the radio frequency signaling chains to receive signals from a second wireless network when a set of receive signal conditions for the second wireless network is satisfied. The wireless communication device reconfigures both of the radio frequency signaling chains to the second wireless network when the set of receive signal conditions is not satisfied.
Abstract:
A jitter buffer in a Voice over LTE receiver may be influenced by radio level feedback (RLF) from both local and remote endpoints to preemptively adjust the jitter buffer delay in anticipation of predicted future losses that have a high probability of occurring. The radio events of the RLF and the scenarios that trigger the preemptive adjustments may be identified, and their use may be expressed in terms of mathematical formulas. Previously, the instantaneous jitter was derived from a weighted history of the media stream, and consequently only packets that had already been received were used to compute the instantaneous jitter to adjust the length of the buffer. By providing and using RLF from both local and remote endpoints, the anticipated delay—for packets that have not yet arrived—may be used to preemptively adjust the buffer, thereby minimizing packet loss without introducing unnecessary delay.
Abstract:
Methods, apparatuses and computer readable media are described that configure wireless circuitry of a wireless communication device. The wireless communication device establishes a connection to a first wireless network using first and second receiving signaling chains. In response to detecting a radio frequency tune-away event, the wireless communication device reconfigures only one of the radio frequency signaling chains to receive signals from a second wireless network when a set of receive signal conditions for the second wireless network is satisfied. The wireless communication device reconfigures both of the radio frequency signaling chains to the second wireless network when the set of receive signal conditions is not satisfied.
Abstract:
This disclosure relates to methods and devices for mitigating overheating in a user equipment device (UE). The UE is configured to communicate over each of LTE and 5G NR and may be configured to communicate through 5G NR over each of a Sub-6 GHz and a millimeter Wave (mmW) frequency band. The UE is configured to establish an ENDC connection with an enB and one or more gNBs. The UE implements intelligent transmission modification and cell measurement adjustments to mitigate overheating and reduce battery drain.