Abstract:
In vivo visualization systems are described which facilitate tissue treatment by a user in utilizing real time visualized tissue images with generated three-dimensional models of the tissue region of interest, such as the left atrial chamber of a subject's heart. Directional indicators on the visualized tissue as well as the imaging systems may be utilized while other variations may utilize image rotation or manipulation of visualized tissue regions to facilitate catheter control. Moreover, visualized tissue regions may be combined with imaged tissue regions as well as navigational information to further facilitate tissue treatments.
Abstract:
Apparatus and methods for rapid deployment of tissue anchors are described herein. A tissue manipulation assembly is pivotably coupled to the distal end of a tubular member and has a lower jaw member and an upper jaw member pivotably coupled to the lower jaw member. A reconfigurable launch tube is pivotably coupled to the upper jaw member and is used to urge the jaw members from a low-profile configuration to an open configuration. A needle assembly can be advanced through the launch tube across tissue received between the jaw members of the tissue manipulation assembly. Tissue anchors can be advanced through the needle assembly for securing received tissue. The tissue anchors can be positioned within a reloadable chamber of a control handle disposed outside the patient, then advanced through the needle assembly.
Abstract:
Apparatus and methods are provided for forming a gastrointestinal tissue fold by engaging tissue at a first tissue contact point, moving the first tissue contact point from a position initially distal to a second tissue contact point to a position proximal of the second contact point to form a tissue fold, and extending an anchor assembly through the tissue fold near the second tissue contact point.
Abstract:
Needle assemblies for tissue manipulation are described herein. In creating tissue folds within the body of a patient, a tissue manipulation assembly may generally have an elongate tubular member, an engagement member slidably disposed through the tubular member and a distal end adapted to engage tissue via a helical member, tissue stabilizing members positioned at the tubular member distal end which are adapted to stabilize tissue therebetween, and a delivery tube pivotable about the tissue stabilizer. A needle deployment assembly is deployable through the tissue manipulation assembly via a handle assembly, through the tubular member, and into or through tissue. An elongate pusher is translationally disposed within a sheath of the needle deployment assembly and can be urged distally for deploying an anchor assembly from the sheath distal end. The anchor assembly is positioned distally of the pusher within the sheath.
Abstract:
Visualization and ablation system variations are described which utilize various tissue ablation arrangements. Such assemblies are configured to facilitate the application of bipolar energy delivery, such as RF ablation, to an underlying target tissue for treatment in a controlled manner while directly visualizing the tissue during the bipolar ablation process.
Abstract:
Apparatus and methods are provided for forming a gastrointestinal tissue fold by engaging tissue at a first tissue contact point, moving the first tissue contact point from a position initially distal to a second tissue contact point to a position proximal of the second contact point to form a tissue fold, and extending an anchor assembly through the tissue fold near the second tissue contact point.
Abstract:
A device for modifying tissue in a spine may include: a shaft having a proximal portion and a distal portion, the distal portion having dimensions which allow it to be passed into an epidural space of the spine and between target and non-target tissues; at least one distal force application member extending from the distal portion of the shaft and configured to facilitate application of at least one of anchoring force and tensioning force to the shaft; at least one movable tissue modifying member coupled with the shaft at or near its distal portion; at least one drive member coupled with the at least one tissue modifying member to activate the at least one tissue modifying member; and at least one power transmission member coupled with the at least one drive member to deliver power to the at least one drive member.
Abstract:
Apparatus and methods are provided for placing and advancing a diagnostic or therapeutic instrument in a hollow body organ of a tortuous or unsupported anatomy, comprising a handle, an overtube disposed within a hydrophilic sheath or liner, and a distal region having an atraumatic tip. The sheath/liner may be disposable to permit reuse of the overtube. Loading devices may be provided for disposing the sheath/liner about the overtube. Tensioning mechanisms may be provided to selectively stiffen the overtube to reduce distension of the organ caused by advancement of the diagnostic or therapeutic instrument. The distal region permits passive steering of the overtube caused by deflection of the diagnostic or therapeutic instrument, while the atraumatic tip prevents the wall of the organ from becoming caught or pinched during manipulation of the diagnostic or therapeutic instrument.
Abstract:
Tissue manipulation and securement systems are described herein. A tissue manipulation assembly is pivotably coupled to the distal end of a tubular member and has a lower jaw member and an upper jaw member pivotably coupled to the lower jaw member. A reconfigurable launch tube is also pivotably coupled to the upper jaw member and is used to urge the jaw members from a low-profile configuration to an open configuration for receiving tissue. The tissue manipulation assembly may be advanced through a shape-lockable endoscopic device, a conventional endoscope, or directly by itself into a patient. A second tool can be used in combination with the tissue manipulation assembly to engage tissue and manipulate the tissue in conjunction with the tissue manipulation assembly.
Abstract:
Apparatus & methods for endoscopic suturing are described herein. A distal tip of the endoscopic device engages the tissue and then approximates the engaged tissue to form a tissue fold. A needle body positioned within a flexible catheter is deployed into or through the newly created tissue fold where it is then detached or released from the endoscopic device. The needle body has a length of suture which depends therefrom and can be used to secure the tissue fold. The entire endoscopic device or its tissue engaging assembly can then be rotated relative to the tissue fold while maintaining engagement with the tissue to maneuver the flexible catheter to the opposing side of the penetrated tissue fold. This procedure can be repeated any number of times to create an interrupted, continuous, or running suture to secure the tissue fold.