Delivery drop rate modulation
    54.
    发明授权

    公开(公告)号:US10071804B1

    公开(公告)日:2018-09-11

    申请号:US14868005

    申请日:2015-09-28

    Abstract: An unmanned aerial vehicle (UAV) can deliver a package to a delivery destination. Packages delivered by a UAV may be lowered towards the ground while the UAV continues to fly rather than the UAV landing on the ground and releasing the package. Packages may sway during lowering as a result of wind or movement of the UAV. By modulating a rate of descent of a package, a package sway may mitigated. The lowering mechanism includes wrapping a tether in various directions around the package such that the package rotates in a first and second direction as the package descends. Additionally, a rip-strip lowering mechanism that separates under tension to lower the package and a rappel mechanism that slides the package down a tether may be used. Accordingly, the tether can control a descent of the package assembly.

    Automated aerial vehicle inspections

    公开(公告)号:US10053236B1

    公开(公告)日:2018-08-21

    申请号:US15083161

    申请日:2016-03-28

    Abstract: Automated inspections of aerial vehicles may be performed using imaging devices, microphones or other sensors. Between phases of operation, the aerial vehicle may be instructed to perform a plurality of testing evolutions, e.g., in a sequence, at a testing facility, and data may be captured during the evolutions by sensors provided on the aerial vehicle and by ground-based sensors at the testing facility. The imaging and acoustic data may be processed to determine whether any vibrations or radiated noises during the evolutions are consistent with faults or discrepancies of the aerial vehicle such as microfractures, corrosions or fatigue. If no faults or discrepancies are detected, the aerial vehicle may be returned to service without delay. If any faults or discrepancies are detected, however, then the aerial vehicle may be subjected to maintenance, repairs or further manual or visual inspections.

    Ballast control mechanisms for aerial vehicles

    公开(公告)号:US09908619B1

    公开(公告)日:2018-03-06

    申请号:US14497136

    申请日:2014-09-25

    CPC classification number: B64C17/08 B64C39/024

    Abstract: An automated aerial vehicle (“AAV”) and systems, devices, and techniques pertaining to moveable ballast that is movable onboard the AAV during operation and/or flight. The AAV may include a frame or support structure that includes the movable ballast. A ballast controller may be used to cause movement of the ballast based on one or more factors, such as a type of flight, a type of operation of the AAV, a speed of the AAV, a triggering event, and/or other factors. The ballast may be moved using mechanical, electrical, electromagnetic, pneumatic, hydraulic and/or other devices/techniques described herein. In some embodiments, the ballast may be moved or located in or toward a centralized position in the AAV to enable more agile control of the AAV. The ballast may be moved outward from the centralized location of the AAV to enable more stable control of the AAV.

    Commercial and general aircraft avoidance using light pattern detection

    公开(公告)号:US09761147B2

    公开(公告)日:2017-09-12

    申请号:US14569125

    申请日:2014-12-12

    Abstract: This disclosure is directed to a detection and avoidance apparatus for an unmanned aerial vehicle (“UAV”) and systems, devices, and techniques pertaining to automated object detection and avoidance during UAV flight. The system may detect objects within the UAV's airspace through acoustic, visual, infrared, multispectral, hyperspectral, or object detectable signal emitted or reflected from an object. The system may identify the source of the object detectable signal by comparing features of the received signal with known sources signals in a database. The features may be, for example, a light arrangement or number of lights associated with the object. Furthermore, a trajectory envelope for the object may be determined based on characteristic performance parameters for the object such as cursing speed, maneuverability, etc. The UAV may determine an optimized flight plan based on the trajectory envelopes of detected objects within the UAV's airspace to avoid the detected objects.

Patent Agency Ranking