Abstract:
A light emitting device with a coupled quantum well structure in an active region. The coupled quantum well structure may include two or more wells are separated by one or more mini-barriers, and the wells and mini-barriers together are sandwiched by barriers. The coupled quantum well structure provides almost the same effect as a wide quantum well, due to the coupling of the wavefunctions through the mini-barrier. The light emitting device may be a nonpolar, semipolar or polar (Al,Ga,In)N based light emitting device.
Abstract:
An purpose of the invention is to immediately return the operation in a flash memory module from low power consumption mode to regular mode.A flash memory controller having memory that stores an address translation table for translating between a logical page address and a physical page address in the flash memory chip controls regular mode and low power consumption mode of operating at lower power consumption than in regular mode by halting operation, or decreasing power supply voltage or lowering operating frequency. A flash memory module having the flash memory controller verifies data in the address translation table while low power consumption mode is set.
Abstract:
When data of HDD of computer is backed up to a a data center and a failure occurs in the HDD, the computer notifies failure information to the data center, and the data center stores the backed up data in a storage medium substituting HDD for subsequent delivery. Further, the computer executes processing, using a VNC server, from failure occurrence until recovery.
Abstract:
A fault-tolerant storage system is provided. The storage system is composed of a controller having a plurality of processors and other units. When an error occurs in any one of the components in the controller, the storage system cuts off an I/O path of the controller, specifies the failed component in the cutoff status, and invalidates the failed component. After invalidating the failed component, the storage system determines whether it is operable only with the normal components, cancels (releases) the cutoff of the I/O path when it determines that it is operable, and resumes operation by rebooting.
Abstract:
A structure using integrated optical elements is comprised of a substrate, a buffer layer grown on the substrate, one or more first patterned layers deposited on top of the buffer layer, wherein each of the first patterned layers is comprised of a bottom lateral epitaxial overgrowth (LEO) mask layer and a LEO nitride layer filling holes in the bottom LEO mask layer, one or more active layers formed on the first patterned layers, and one or more second patterned layers deposited on top of the active layer, wherein each of the second patterned layers is comprised of a top LEO mask layer and a LEO nitride layer filling holes in the top LEO mask layer, wherein the top and/or bottom LEO mask layers act as a mirror, optical confinement layer, grating, wavelength selective element, beam shaping element or beam directing element for the active layers.
Abstract:
This invention enables a disk subsystem that employs the FC-AL connection to grasp the operation status of each disk drive, quickly locate a disk drive that has failed, and promptly carry out blocking processing. In a disk subsystem including plural drive enclosures which store disk drives, and a disk controller which controls transfer of data stored in the disk drives between the drive enclosures and a host computer. The drive enclosures each comprise a backend switch which is connected to the disk drives and to the disk controller, the backend switch comprises a status monitoring port through which operation status of switch ports of the backend switch is outputted, and the disk controller monitors a fault of the switch ports through the status monitoring port.
Abstract:
A method for improved growth of a semipolar (Al,In,Ga,B)N semiconductor thin film using an intentionally miscut substrate. Specifically, the method comprises intentionally miscutting a substrate, loading a substrate into a reactor, heating the substrate under a flow of nitrogen and/or hydrogen and/or ammonia, depositing an InxGa1−xN nucleation layer on the heated substrate, depositing a semipolar nitride semiconductor thin film on the InxGa1−xN nucleation layer, and cooling the substrate under a nitrogen overpressure.
Abstract translation:使用有意识的基板改善半极性(Al,In,Ga,B)N半导体薄膜生长的方法。 具体地说,该方法包括有意地将基板,基板加载到反应器中,在氮气和/或氢气和/或氨气流下加热基板,在加热的基板上沉积In x Ga 1-x N成核层,沉积半极性氮化物 半导体薄膜在InxGa1-xN成核层上,并在氮气过压下冷却衬底。
Abstract:
A substrate comprising a trench lateral epitaxial overgrowth structure including a trench cavity, wherein the trench cavity includes a growth-blocking layer or patterned material supportive of a coalescent Pendeo layer thereon, on at least a portion of an inside surface of the trench. Such substrate is suitable for carrying out lateral epitaxial overgrowth to form a bridged lateral overgrowth formation overlying the trench cavity. The bridged lateral overgrowth formation provides a substrate surface on which epitaxial layers can be grown in the fabrication of microelectronic devices such as laser diodes, high electron mobility transistors, ultraviolet light emitting diodes, and other devices in which low dislocation density is critical. The epitaxial substrate structures of the invention can be formed without the necessity for deep trenches, such as are required in conventional Pendeo epitaxial overgrowth structures.
Abstract:
A Group III-nitride semiconductor film containing aluminum, and methods for growing this film. A film is grown by patterning a substrate, and growing the Group III-nitride semi-conductor film containing aluminum on the substrate at a temperature designed to increase the mobility of aluminum atoms to increase a lateral growth rate of the Group III-nitride semiconductor film. The film optionally includes a substrate patterned with elevated stripes separated by trench regions, wherein the stripes have a height chosen to allow the Group III-nitride semiconductor film to coalesce prior to growth from the bottom of the trenches reaching the top of the stripes, the temperature being greater than 1075° C., the Group III-nitride semiconductor film being grown using hydride vapor phase epitaxy, the stripes being oriented along a (1-100) direction of the substrate or the growing film, and a dislocation density of the grown film being less than 107 cm−2.