Abstract:
The present disclosure is directed to laser-markable insulation material and cable or wire assemblies containing such insulation material. In certain embodiments, the laser-markable insulation material can include a fluoropolymer and an inorganic laser-markable pigment. The pigment can have a mean crystal size in a range of about 0.4 microns to about 2 microns and/or a median particle size (d50) in a range of about 0.45 microns to about 2 microns. The insulation material can exhibit improved initial and heat-aged contrast ratios without diminishing the ability of a cable or wire containing the insulation material to meet industry standards for electric-arc tracking and propagation resistance.
Abstract:
A method of preparing a window module includes providing a metal frame having a first major surface, applying a structural glazing tape to the first major surface of the metal frame, and positioning a glass panel overtop the structural glazing tape. The structural glazing tape includes a polymer foam tape having first and second major surfaces, an adhesive layer overlying the first major surface for bonding the structural glazing tape to the structural frame, and a release layer overlying the second major surface. The method further includes filling a channel defined by the glass panel, the metal frame, and the structural glazing tape with a curable sealant, and curing the sealant to bond the glass panel and the metal frame together.
Abstract:
The present disclosure is directed to laser-markable insulation material and cable or wire assemblies containing such insulation material. In certain embodiments, the laser-markable insulation material can include a fluoropolymer and an inorganic laser-markable pigment. The pigment can have a mean crystal size in a range of about 0.4 microns to about 2 microns and/or a median particle size (d50) in a range of about 0.45 microns to about 2 microns. The insulation material can exhibit improved initial and heat-aged contrast ratios without diminishing the ability of a cable or wire containing the insulation material to meet industry standards for electric-arc tracking and propagation resistance.
Abstract:
The present application is directed to closure assemblies, and particularly closure assemblies for closing an opening in a vessel. In particular embodiments, the closure assemblies described herein can have a first ring having a top surface, an inner surface and an outer surface, wherein the outer surface comprises threading, wherein the first ring comprises a first flange having a top surface extending radially inward from the inner surface of the first ring a distance of FL, and wherein the top surface of the first flange is spaced apart from the top surface of the first ring by a distance FH, and wherein a ratio of FH:FL is greater than 1.
Abstract:
A fluid flow sinker including a body having a generally cylindrical sidewall, a first end, a second end, and an aperture extending between the first and second ends; and a fluid passageway disposed on the first end and extending from the generally cylindrical sidewall to the aperture, wherein the fluid flow sinker is adapted to receive a tube in communication with the aperture.
Abstract:
A coated fabric includes a reinforcement, a first coating disposed on the reinforcement, and a second coating disposed on the first coating. The first coating includes perfluoropolymer. The second coating includes perfluoropolymer and a silicone polymer in an amount in a range of 2 wt % to 30 wt %.
Abstract:
The present disclosure is directed to transparent infra-red (IR) reflective and/or low emissivity composite films which contain an ALD metal oxide based layer. Specific embodiments of the present disclosure are directed to an IR reflective composite film comprising: a transparent substrate layer comprising a polymer; one or more metal based layers; one or more silver based layers; one or more metal oxide based layers; and an ALD metal oxide based layer.
Abstract:
A coating material includes a binder system and particles dispersed in the binder system. A composite includes a substrate and a coating layer comprising a binder system and particles dispersed in the binder system. A method for manufacturing a coating material, or a composite having a coating layer, includes providing a binder system and dispersing particles in the binder system.
Abstract:
An electrode contains a first layer and a second layer. The first layer can be a dielectric layer and the second layer can be a layer containing a metal. A method for forming an electrode includes depositing the first layer and the second layer on a substrate.
Abstract:
A polymer sheet includes a polyurethane core. The polyurethane core has a first major surface and a second major surface opposite the first major surface. The polymer sheet can have at least one functional layer overlying a major surface. The polymer sheet has a thickness tPS. The polyurethane core has a thickness tPC. In embodiments tPC can at least 0.3 of tPS. The polyurethane core can have at least one feature selected from the group: (i) an elasticity as measured according to the Thin Gauge Elasticity Test of not more than 30%, (ii) a loss of tensile strength of not greater than 30% when exposed to UV light according to standard SAE J1960 (Rev. August 2003), (iii) a thickness of polyurethane core tPC of not greater than 0.2 mm, (iv) an elongation at break of at least 200%, and (v) a tensile strength at break of at least 0.3 MPa.