Abstract:
A transportable PCM (phase change material) module comprises a number of PCM packs; a housing for thermally insulting said number of PCM packs from a module's surrounding medium; spaces separating said packs and forming one or more channels for the flow of a fluid; said housing incorporating a fluid inlet and a fluid outlet; whereby, in use, fluid flows through said channels from said inlet to said outlet. A PCM (phase change material) pack comprises a laminate of a first conducting panel and a second conducting panel enclosing a portion formed primarily of PCM; wherein said portion of PCM incorporates thermal conductors. A PCM (phase change material pack) comprises an envelope of relatively highly thermally conductive material enclosing a portion formed primarily of PCM; wherein said PCM portion incorporates a conductive compound mixed into said PCM which comprises carbon black particles.
Abstract:
A poly(neopentylpolyol) ester composition is produced by reacting a neopentylpolyol having the formula: wherein each R is independently selected from the group consisting of CH3, C2H5 and CH2OH and n is a number from 1 to 4, with at least one monocarboxylic acid having 2 to 15 carbon atoms in the presence of an acid catalyst and at an initial mole ratio of carboxyl groups to hydroxyl groups of greater than 0.5:1 to 0.95:1 to form a partially esterified poly(neopentylpolyol) composition. Then the partially esterified poly(neopentylpolyol) composition is reacted with additional monocarboxylic acid having 2 to 15 carbon atoms to form a final poly(neopentylpolyol) ester composition.
Abstract translation:聚(新戊基多元醇)酯组合物通过使具有下式的新戊基多元醇反应来制备:其中每个R独立地选自CH 3,C 2 H 5和CH 2 OH,n是1至4的数,其中至少一个一元羧酸具有 在酸催化剂存在下,羧基与羟基的初始摩尔比大于0.5:1至0.95:1,以形成部分酯化的聚(新戊基多元醇)组合物。 然后将部分酯化的聚(新戊基多元醇)组合物与另外具有2至15个碳原子的一元羧酸反应以形成最终的聚(新戊基多元醇)酯组合物。
Abstract:
The present disclosure relates to a film or a composite that provides excellent heat removal capabilities and improved chemical stability and methods of forming the film and the composite. The film can be a layer of a nanomaterial. The composite can include a nanomaterial and a thermal interface material (TIM). The methods generally involve dispersing the nanomaterial in a carrier when forming the film or the composite.
Abstract:
According to some embodiments, the present provides a heat transfer medium that includes, but is not limited to a base fluid, a plurality of single-walled carbon nanotubes, and a gelling formulation formed of an amine surfactant, an intercalating agent, and an oxygen-bearing solvent. The heat transfer medium is adapted for improved thermal conductivity with respect to the base fluid.
Abstract:
Disclosed herein is a heat transfer fluid concentrate comprising: greater than or equal to 85 weight percent of a freezing point depressant, based on the total weight of the heat transfer fluid concentrate; 50 to 2000 ppm of lithium ions; an azole compound; an inorganic phosphate; a carboxylic acid; and an acrylate based polymer, wherein the heat transfer fluid has a pH of 7.0-9.5. The heat transfer fluid concentrate can be used to make a heat transfer fluid.
Abstract:
A cooling system includes a cooling loop that includes a reservoir. The reservoir has a level sensor that is configured to provide a level signal indicative of a coolant level within the reservoir. A temperature sensor is in communication with the cooling loop and is configured to provide a temperature signal. A controller is in communication with the level sensor and the temperature sensor. The controller has a coolant density data. The controller is configured to correct the level signal based upon the temperature signal and detect a leakage condition of the cooling system. A method of determining a coolant amount within a cooling system includes the steps of determining an amount of coolant having a temperature-variable density, determining a coolant temperature, correcting the coolant amount based upon the coolant temperature, and comparing the corrected coolant amount to a desired coolant amount to detect a coolant leakage condition.
Abstract:
A heat dissipation composition includes a hydroxy function group contained double-bond substance (such as 2-hydroxybenzophenone, 2-hydroxydibenzoacid, and alkyl 2-cyano-3,3-diphenylacrylate) formed of aromatic hydrocarbons having precursor of benzene, which is mixed with a resin-based coating agent and a diluting agent at predetermined ratios for application on a surface of a heat dissipater to facilitate heat dissipation, whereby when the heat dissipater receives heat to be dissipated, the double-bond substance absorbs the heat and induces displacement to form a resonance structure so as to more efficiently dissipate the heat and when the heat is dissipated, the substance restores the double-bond condition thereby realizing improvement of efficiency of heat dissipation.
Abstract:
The invention is directed to a ternary azeotrope-like mixture consisting essentially of effective amounts of 1,1,1,3,3-pentafluoropropane, 1-chloro-3,3,3-trifluoropropene, and hydrogen fluoride.
Abstract:
The present invention relates to a medium in the form of an aqueous mixture for improving the heat transfer coefficient and use thereof in power plant technology, in particular in steam generating plants. The medium contains at least one film-forming amine (component a) with the general formula: R—(NH—(CH2)m)n—NH2/, where R is an aliphatic hydrocarbon radical with a chain length between 12 and 22 and m is an integral number between 1 and 8 and n is an integral number between 0 and 7, contained in amounts up to 15%.
Abstract:
Disclosed herein are a dielectric fluid composition and a method thereof. Also disclosed are viscosity modifiers and a method of lowering the viscosity of an oil-based dielectric fluid. The composition includes an oil with a high mono-unsaturated fatty acid content and one or more fatty acid alkyl esters, each having a fatty acid and an alkyl moiety, wherein the alkyl moiety of the fatty acid alkyl esters has 1 to 4 carbon atoms, and wherein both the oil and the fatty acid alkyl ester are in the range of 40%-60% v/v of the dielectric fluid composition. The viscosity modifier includes one or more fatty acid alkyl esters with an alkyl moiety and a fatty acid moiety, wherein the alkyl moiety has 1 to 4 carbon atoms. The method of lowering the viscosity includes blending the viscosity modifier and a vegetable oil-based dielectric fluid in a ratio of 40:60-60:40.