Abstract:
Light from an object moving through an imaging system is collected, dispersed, and imaged onto a time delay integration (TDI) detector that is inclined relative to an axis of motion of the object, producing a pixilated output signal. In one embodiment, the movement of the image object over the TDI detector is asynchronous with the movement of the output signal producing an output signal that is a composite of the image of the object at varying focal point along the focal plane. In another embodiment, light from the object is periodically incident on the inclined TDI detector, producing a plurality of spaced apart images and corresponding output signals that propagate across the TDI detector. The inclined plane enables images of FISH probes or other components within an object to be produced at different focal points, so that the 3D spatial relationship between the FISH probes or components can be resolved.
Abstract:
A device for selectively detecting specific wavelength components of a light beam includes a spectral spreading element for spectrally spreading the light beam, and a detector array arranged downstream of the element. The detector array includes light-insensitive regions and light-sensitive regions. The element and the detector array are matched to each other so that selectable wavelength components of the light beam hit the light-insensitive regions and remaining wavelength components of the light beam hit the light-sensitive regions.
Abstract:
A gas cell for wavelength calibration or measurement comprises an optical fiber containing a gas having at least one absorption line for providing the wavelength calibration or measurement. The gas is preferably provided in a way that a sufficient part of an optical mode field distribution in the fiber is localized within the gas. The gas may be provided in a hole or an arrangement of holes in or along the fiber.
Abstract:
A photon-emission microscope method and system are described which allow both emission spot localization and continuous spectral analysis of the emited light from the emission spot of a biased electronic circuit. The system includes an emission microscope, a detector and an in-line, direct vision, chromatically dispersing prismatic device. The microscope system advantageously uses only one detector which does not need to be moved to be able to detect both the localization and spectral images. In a particular embodiment, localization of emission spots may be performed using monochromatic light which allows sharp images of the electronic circuit despite the fact that the electronic circuit is viewed through the dispersing device. Further, an improved procedure is described for overcoming errors caused by saturation of the detector at high sensitivities.
Abstract:
The present invention provides a flame sensor having dynamic sensitivity adjustment, wherein the sensitivity of the flame detector can be adjusted by varying the gain of a signal conditioning circuit associated with the flame detector. The flame detector includes a photodiode, such as, for example, a silicon carbide (SiC) photodiode, that, when exposed to electromagnetic radiation having a wavelength in the range of from about 190-400 nanometers, and preferably within the ultraviolet range. The photodiode generates a photocurrent proportional to the ultraviolet light intensity to which it is exposed. The output of the photodiode is processed and amplified by signal conditioning circuitry to produce a signal indicative of the presence of a flame. Moreover, a cutoff wavelength for silicon carbide photodiodes is preferably in the range of about 400 nanometers, which renders the photodiode "blind" to potentially interfering blackbody radiation from the walls of the turbine.
Abstract:
A spectroscopic apparatus capable of simultaneously producing spectroscopic images corresponding to a plurality of wavelengths and a spectroscopic image recording apparatus capable of recording the produced spectroscopic images, wherein an image producing unit produces a plurality of same images from a single input image by dividing a pupil of an optical system, a first spectroscopic unit produces a plurality of first spectroscopic images corresponding to the plurality of same images by extracting a predetermined wavelength component corresponding to each of the plurality of same images, and a second spectroscopic unit produces a plurality of second spectroscopic images corresponding to respective ones of the first spectroscopic images by extracting a predetermined wavelength component corresponding to each of the first spectroscopic images corresponding to the plurality of same images.
Abstract:
A spectrophotometer employs an array of optical elements to focus light from at least one, but preferably two light sources onto a fiber optic beam splitter that provides a pickup for a selected bandwidth of wavelengths of light in the spectral pattern. The spectral pattern can include wavelengths in the visible, near infrared and ultraviolet spectrum. To create the spectral pattern, two reflecting prisms having spherical surfaces are used, and the optical elements are arranged so that the two spectral bands from each prism are longitudinally aligned to create the spectral pattern. The prisms are on a motor driven pivot mount so that the spectral pattern may be swept across the pickup. The optical elements and the pickup are sized so that the selected bandwidth is less than twenty nanometers over the spectral pattern. The pickup is formed by a single row of the ends of fiber optic strands which are then collimated into two bundles to transmit a test component and a reference component of light. The sample cell is somewhat elongated, and a lens is interposed in the test component path before the sample cell, and this lens is sized to focus light axially through the sample cell without impinging on the sidewalls. Photodiode detectors, comparator circuitry and a controller are included.
Abstract:
A dewar cooled piezo electric activated beam splitter permits a filtered dimensional multispectral multidetector staring imager to operate as a target acquisition and recognition device as well as a detector and classifier of unknown chemical vapors or other targets with spectral fingerprint.
Abstract:
Apparatus for color measurements according to the C.I.E. system comprises a first fiber optic cable for receiving and linearizing light from a light source, a lens system for spectrally displaying the linearized light and focusing the light on one end of a trifurcated fiber optic assembly that integrates and separates the light according to the three C.I.E. tristimulus functions. The separated light is received by three photodiodes and electronically evaluated to determine the magnitude of the light corresponding to the tristimulus functions. The fiber optic assembly is made by forming, at one end, a bundle of optic fibers to match the contours of one of the tristimulus functions, encapsulating that bundle, adding a second bundle that, together with the first bundle, will match the contours of the first plus one other tristimulus function, encapsulating that second bundle, then adding a third bundle which together with the first and second bundles, has contours matching the sum of all three tristimulus functions. At the other end of the assembly the three bundles are separated and aligned with their respective photodiodes.
Abstract:
A device for the spectral dispersion of light suitable for use in a spectrographic mode with arrays of solid state photo-detectors. Light from an entrance aperture passes through a dispersing prism with two curved, refracting surfaces both operating near their aplanatic conjugates. After being reflected by a concave mirror located behind the prism, light returns through the prism in the opposite direction, the refractions at each face again being nearly aplanatic. Spectrally dispersed images of the entrance aperture are formed on a plane well separated from the entrance aperture and nearly normal to the incident light rays. Good image quality is maintained over a broad range of operating wavelengths simultaneously, allowing large spectral intervals to be surveyed without moving any of the elements of the system.