摘要:
An air cooled condenser apparatus has a tubular shell having an open upper end and an open lower end, a ring of tube bundle panels disposed generally vertically and at an angle to each other, with each of the tube bundles comprising a primary condenser region and a secondary condenser region, and adapted for air flow therethrough to condense fluid in the panels , and configured so that air flow through the panels passes through and exits the open upper end of the shell, and a duct disposed at the ground level of the shell, and a non-condensable extraction system with active or passive devices to control the local rate of the evacuated mixture of non-condensables and attached steam.
摘要:
Air conditioning units packaged with condensing heat exchangers, collectors for such units, and apparatuses for passing a tube through a duct wall and making a loop and trap in the tube. In different embodiments, a drain line may connect to a collector attached to the heat exchanger or condensate may discharge through an inducer fan and out with combustion gasses. A drain line opening in the collector may be lower than a drain hole to the inlet of the inducer fan, which may be lower than an exhaust hole for the fan. A plug in the drain line opening in the collector may be used to discharge condensate through the inducer fan and a bifurcation in the exhaust conduit may separate condensate from most combustion gasses. Embodiments having a drain line connected to the collector may route the drain line through the roof, a conduit, or in the return duct.
摘要:
A device for cooling hot gases (quencher) with the formation of a corrosive condensation product, which device has a pressure-resistant container and at least one corrosion-resistant internal gas guide pipe, and to a method of cooling gases that form corrosive condensation products, which method uses the mentioned device.
摘要:
The invention relates to an air cooled condenser system that contains a steam-air heat exchanger (3) consisting of tubes (2) finned on the outside for the partial direct condensing of steam (1) with ambient air (4). This heat exchanger (3) receives the steam (1) from an upper distribution chamber (24) and ends in a lower chamber (25) which collects the condensate (8) and the steam (27) that has not yet condensed. The steam (22) not yet condensed in the steam-air heat exchanger (3) is condensed, in the steam-air section of the air cooled condenser, in a space operating as a direct contact condenser (9) by spraying water from the water-air cooling section (7) of the air cooled condenser, where the non-condensing gases are removed as well. The water (13) heated up in the direct contact condenser (9) is re-cooled in a water-air heat exchanger (7).
摘要:
Disclosed is a method for operating a condenser of the type having a housing inside of which is disposed a bundle of water tubes, a steam inlet for steam to flow inside the housing for contacting the tube bundle for cooling, and having a stagnant air zone during operation wherein any air in-leakage preferentially collects and condensate in the air zone becomes subcooled. A trough or drain is placed beneath the stagnant air zone for collecting subcooled condensate from the stagnant air zone. Collected subcooled condensate is transported from the trough or drain in a pipe to said steam inlet. The transported condensate is injected with an injector for contacting with steam entering the condenser, whereby the injected condensate is heated by the steam for expelling dissolved oxygen in the injected condensate. Advantageously, the condenser is fitted with an array of temperature sensors at the stagnant air zone for determination of its presence and/or size. Additionally, disclosed is a method for preventing air bound zones in the tube bundle sections of the condenser.
摘要:
Vertical sectional shapes of portions in which condenser tubes of the upper tube bundle 51 and the lower tube bundle 52 are arranged, in vertical sections of the upper tube bundle 51 and the lower tube bundle 52, are formed to be approximately U-shapes, and a noncondensing air ejection duct 11 is provided to be positioned on a central joint portion of the U-shape of the upper tube portion 51 in an upstream side where circulating water flows first. At a portion in which the condenser tubes are not arranged between the upper and lower tube bundles, steam flow prevention plates 53 are provided to be positioned at both right and left sides of the noncondensing air ejection duct 11.
摘要:
A turbine air sealing and condenser air removal system for use in steam plant equipment is arranged to increase steam plant efficiency, reduce oxygen concentration in condensate being returned to the steam generators, and simplify system arrangement and maintenance. This system incorporates dry running shaft seals at the high and low pressure turbine shaft glands. The turbine shaft glands are exhausted to a vacuum header which is exhausted by vacuum pumps. Air from the condenser is also exhausted to the common vacuum header. Non-rotating air seals on the turbine such as valve stem seals, which must only accommodate linear movement, can incorporate metallic bellows or conventional packings to prevent air leakage into the steam path or steam leakage out into the surrounding environment. The bellows seals may also incorporate stem glands which are exhausted to the turbine exhaust trunk to minimize the internal pressure of the bellows and prevent catastrophic failure which might occur if the bellows were to be pressurized with high pressure steam.
摘要:
In a power plant having a boiler for heating a fluid to form a gaseous phase, a power generator for generating electrical power from the gaseous phase, a condenser for condensing the gaseous phase after the gaseous phase has passed through the power generator, a liquid ring pump for evacuating uncondensed gaseous phase from the condenser, and a chiller for cooling seal liquid discharged from the liquid ring pump for re-use in the liquid ring pump, apparatus is provided for utilizing the heat generated during the operation of the chiller to heat a predetermined portion of the fluid supplied to the boiler, thereby reducing the amount of heat which must be provided by the boiler to form a gaseous phase of the fluid so that electricity can be generated. The efficiency of the power plant is thereby increased.
摘要:
A heat exchanger for condensing into liquid phase a vapor containing non-condensable gas components through heat exchange with a heat exchanging medium has a vessel having a vapor inlet for receiving the vapor containing the non-condensable gas components and a discharge port for the non-condensable gas components. The heat exchanger further has a tube nest disposed in the vessel and having a plurality of tubes through which the heat exchanging medium flows. The vapor containing non-condensable gas components flows towards the discharge port across the tube nest so as to be condensed into liquid phase through heat exchange with the heat exchanging medium flowing through the tubes, so that the non-condensable gas components are separated from the liquid phase and flow towards the discharge port. The tube nest is constructed to create a change in the dynamic pressure of flow of the vapor towards the discharge port to cause such a static pressure distribution in the heat exchanger that a lower static pressure is established in a region where the discharge port is provided than in a region where the vapor inlet is provided.
摘要:
Apparatus for purging non-condensable gases from a condenser containing vaporized, condensable working fluid, includes an enclosed chamber located above the condenser, a movable diaphragm in the chamber for dividing the latter into upper and lower portions, two flow control valves serially connected together and located between the condenser and the lower portion of the chamber, and a venting valve connected to the lower portion. Each of the valves are selectively operable and have an open and a closed state. A mechanism is provided for moving the diaphragm for changing the volume of the lower portion; and a mechanism is provided for synchronizing the states of the valves with changes in the volume of the lower portion.