摘要:
A system for recovering flash steam and condensate includes a flash steam recovery unit for recovering steam from a fluid containing flash steam and condensate, a condensate recovery unit positioned below the flash steam recovery unit to receive the condensate by gravity, wherein the condensate recovery unit is operated by pressurized pumping means which are adapted for selectively receiving the condensate into the condensate recovery unit, discharging the condensate to a process equipment through an outlet steam trapping unit, and discharging the exhaust gas via an exhaust gas outlet.
摘要:
A vertical bundle air-cooled heat exchanger. In one embodiment, the invention can be a vertical bundle air-cooled condenser comprising: at least one tube bundle assembly comprising: a tube bundle comprising a plurality of finned tubes arranged in a substantially vertical and side-by-side orientation, each of the plurality of finned tubes comprising a cavity; a top header pipe comprising an inlet header cavity operably coupled to a source of steam; a bottom header pipe comprising an outlet header cavity for collecting condensate; top ends of the plurality of finned tubes coupled to the top header pipe and the bottom ends of the plurality of finned tubes coupled to the bottom header pipe; and a shell having an open top end and open bottom end, the at least one tube bundle assembly positioned within the shell.
摘要:
A condensing vessel is shown generally at 100, and comprises a stationary outer chamber 102, and a rotating portion in the form of an inner rotating drum or chamber 104, both of which are generally cylindrical, and arranged concentrically. A steam inlet 128 is provided to the inner chamber 104, and a water outlet 130 is provided from the outer chamber 102. Water level sensors 132 are provided on the outer chamber 102 to provide a control signal to a water pump (not shown). The water pump withdraws water to a de-aerator, prior to returning the water to a hot well (not shown). The pump is regulated by a three-way valve which determines how much (if any) water is returned to chamber 102 and how much is directed to the de-aerator, in dependence upon the water level in chamber 102. In use, steam enters the inlet 128 from an exhaust of a steam turbine (not shown). The inner chamber 104 is rotating at a speed of several thousand rpm and contains a body of water 134 that rotates with the chamber 104 in the form of a rotating cylindrical wall of water. The first impeller 114 forces the steam down into the chamber 104 where it condenses into droplets of water and is thrown radially outwards towards the wall 108. Uncondensed steam cannot exit the inner chamber as to do so it would first have to pass through the water to be able to enter a gap, labelled G, between the annular plate 112 and the return flange 126. In effect the water in this gap acts as a self-regulating, high-pressure water seal.
摘要:
A vertical bundle air-cooled heat exchanger, In one embodiment, the invention can be a vertical bundle air-cooled condenser comprising: at least one tube bundle assembly comprising; a tube bundle comprising a plurality of finned tubes arranged in a substantially vertical and side-by-side orientation, each of the plurality of finned tubes comprising a cavity; a top header pipe comprising an inlet header cavity operably coupled to a source of steam; a bottom header pipe comprising an outlet header cavity for collecting condensate; top ends of the plurality of finned tubes coupled to the top header pipe and the bottom ends of the plurality of finned tubes coupled to the bottom header pipe; and, a shell having an open, top end and open bottom end, the at least one tube bundle assembly positioned within the shell.
摘要:
A method and system for steam generation and purification is presented. The method includes receiving a fuel stream, a water stream, and an oxidant stream in a direct contact steam generation (DCSG) apparatus; and generating a gas mixture stream comprising steam and carbon dioxide (CO2) in the DCSG apparatus. The method further includes receiving at least a portion of the gas mixture stream in a membrane separator, and separating at least a portion of the steam from the gas mixture stream to generate a permeate stream. The method further includes recirculating at least a portion of the permeate stream to the DCSG apparatus; monitoring a CO2 content in the gas mixture stream; and discharging at least a portion of the gas mixture stream at an outlet of the DCSG apparatus as a product stream if the CO2 content is lower than a determined value.
摘要:
In one embodiment, a direct-contact steam condenser includes: a steam cooling chamber; a inflow part; a plurality of first spray nozzles; and a water reservoir part. The inflow part leads turbine exhaust gas containing steam and non-condensable gas in a substantially horizontal direction into the steam cooling chamber. The plurality of first spray nozzles are disposed in the steam cooling chamber to be connected to a plurality of spray pipes extending along the direction in which the turbine exhaust gas is led in, and spray cooling water to the turbine exhaust gas. The water reservoir part is disposed under the steam cooling chamber to store condensate water that is condensed from the steam by the spraying of the cooling water.
摘要:
A condenser having improved condensation performance is provided. The condenser includes a plurality of cooling pipes, being disposed in a chassis to which the steam is introduced, through the interior of which cooling water used for heat exchange with steam flows; an inner channel that extends in a top-bottom direction and that is surrounded by the plurality of cooling pipes; a plurality of pipe-supporting plates disposed at a distance from one another in a direction in which the plurality of cooling pipes extend to support the plurality of cooling pipes; and a water receiving portion disposed between the plurality of pipe-supporting plates and being inclined downward from one pipe-supporting plate to the other pipe-supporting plate.
摘要:
In the condenser provided with two of the degassing chambers separated by a cooling fluid, communication between the degassing chambers is prevented even if a pressure difference is increased between the degassing chambers. The condenser has the housing having the vapor inflow port connectable to the discharge portion of the compressor, the first degassing chamber, in the housing, communicating with the vapor inflow port, and the second degassing chamber, in the housing, arranged above the first degassing chamber across the partition portion, and the passing portion for permitting a cooling fluid to flow from the second degassing chamber to the first degassing chamber, wherein the first degassing chamber is separated from the second degassing chamber by the cooling fluid in the passing portion, and the passing portion has a pressure head space for containing a specified volume of cooling fluid so as to absorb a variation in a pressure difference between the first degassing chamber and the second degassing chamber.
摘要:
A condenser having improved condensation performance is provided. The condenser includes a plurality of cooling pipes, being disposed in a chassis to which the steam is introduced, through the interior of which cooling water used for heat exchange with steam flows; an inner channel that extends in a top-bottom direction and that is surrounded by the plurality of cooling pipes; a plurality of pipe-supporting plates disposed at a distance from one another in a direction in which the plurality of cooling pipes extend to support the plurality of cooling pipes; and a water receiving portion disposed between the plurality of pipe-supporting plates and being inclined downward from one pipe-supporting plate to the other pipe-supporting plate.
摘要:
A deaerating and degassing system for a power plant condenser, comprising a condensate collector and optionally an air cooler, whereby the deaerating and degassing system includes a suction aggregate and a suction line for a steam-inert gas mixture and the suction line connects the condenser or, in case an air cooler is present, the air cooler of the condenser, to the suction aggregate. In the suction line, there is a direct-contact condensation device, for example, a packing column or a tray contact apparatus, through which the steam-inert gas mixture can flow in direct contact in a countercurrent to the chilled condensate from the condensate collector.