Abstract:
This invention generally relates to a process for suppressing silicon self-interstitial diffusion near the substrate/epitaxial layer interface of an epitaxial silicon wafer having a heavily doped silicon substrate and a lightly doped silicon epitaxial layer. Interstitial diffusion into the epitaxial layer is suppressed by a silicon self-interstitial sink layer comprising dislocation loops.
Abstract:
A substantially cellulose free absorbent core comprising absorbent polymer material having a saline flow conductivity greater than about 100×10−7 cm3·sec/g and a centrifuge retention capacity of greater than about 20 g/g. A disposable absorbent article is also disclosed.
Abstract translation:一种基本上不含纤维素的吸收芯,其包含具有大于约100×10 -7 cm 3·s / g的盐水流动电导率的吸收性聚合物材料和大于约20g / g的离心保留容量。 还公开了一次性吸收制品。
Abstract:
Electrically gradated carbon foam materials that have changing or differing electrical properties through the thickness of the carbon foam material and methods for making these electrically gradated carbon foam materials are described herein. In some embodiments, the electrically gradated carbon foam materials exhibit increasing electrical resistivity through the thickness of the carbon foam material such that the electrical resistivity near a second surface of the carbon foam is at least 2 times greater than the electrical resistivity near a first surface of the carbon foam. These electrically gradated carbon foam materials may be used as radar absorbers, as well as in electromagnetic interference (EMI) shielding schemes.
Abstract:
The present invention provides a functionalized adsorbent for removal of acid gases, which comprises a pore-expanded mesoporous support having a pore volume of between 0.7 and 3.6 cc/g, a median pore diameter of between 1 and 25 nm, and a BET surface area of between 500 and 1600 m2/g. The support is functionalized by addition of acid-gas reactive functional groups within the pores and external surface of said support material. Also provided are methods of manufacturing the adsorbent and methods of use.
Abstract:
An antireflective transparent zeolite hardcoat and fabrication method thereof. The transparent zeolite hardcoat comprises a zeolite nanostructure made of zeolite nanocrystals vertically stacked into a porous structure on a substrate, wherein the porosity increases with structure height, thereby providing a smooth refractive index transition.
Abstract:
The invention relates to a temperature resistant layered structure comprising a substrate and a porous layer arranged on the substrate having a pore defined by a wall, and a ceramic coating on an interior surface of the wall. The invention also relates to a layered turbine component arrangement comprising a substrate having a cooling passage adapted to allow a cooling gas medium to pass through the substrate and a porous layer arranged on the substrate, the porous layer having cooling passages formed by gas-permeable inter-connections between pores in the porous layer.
Abstract:
Methods for filtering particles from a fluid are disclosed, wherein an array of microstructures defining respective microchannels having respective minimum widths are used to separate the fluid from particles to be filtered. The fluid flows through the minimum widths into the microchannels defined between adjacent microstructures. The particles to be filtered are prevented from passing through the respective minimum widths, resulting in filtration of those particles from the fluid. The microchannels can be provided with gradient characteristics to separate particles in the fluid according to size.
Abstract:
A thermal insulation structure includes a plurality of inner air and water vapour permeable insulating layers which entrap air and a water vapour permeable, at least substantially air impermeable film layer separating two said water vapour permeable insulating layers, the inner layers being sandwiched between first and second outer air and liquid water impermeable, water vapour permeable outer film layers, the construction and arrangement of the layers being such as to control, in use, water vapour transmission through the thermal insulation structure. Alternatively, a thermal insulation structure includes a plurality of inner air and water vapour permeable insulating layers which entrap air and an inner air and water vapour impermeable film layer separating two said insulating air entrapment layers, the inner layers being sandwiched between first and second outer air, liquid and moisture vapour impermeable outer film layers.
Abstract:
The present invention provides a method for producing a polyolefin-based resin crosslinked foamed sheet which is excellent in heat resistance and flexibility, has a small diameter of cells, can be developed in various utilities, and is excellent in vacuum moldability. The method for producing a polyolefin-based resin crosslinked foamed sheet according to the present invention comprises the steps of supplying a foamed sheet with closed cells, comprising a polyolefin-based resin, to a gap between one pair of rolls which have different circumferential speeds, and are rotated so that rotation directions on facing surfaces are the same direction, and applying a compression force and a shear stress to the foamed sheet with closed cells simultaneously to rupture a part of closed cells of the foamed sheet with closed cells to communicate closed cells into open cells.
Abstract:
There is provided a multi-layered foamed article. The foam article has a layer of foam material on either side of an inner peel layer disposed roughly in the middle of the foam. The portion of the foam in closest proximity to the peel layer is subjected to the greatest amount of heat during extrusion forming mostly large open cell foam. The foam near the surface of the multiplayer foam article is cooled by the atmosphere or contact with cooling surfaces and comprises mostly small closed-cell foam. There is also provided a method for making a multi-layer foamed article by co-extruding an inner peel layer sandwiched between two expanded layers of a foam material. Each of the expanded foam layers on either side of the peel layer of the article is easily peeled or stripped from the peel inner layer and the multi-layer article is converted into a foamed article with absorbing characteristics on one side and non-absorbing characteristics on the other side. Thus, the foam is predominantly open-cell on one side of the structure and predominantly closed-cell on the opposing side. The open-cell portion of the article is highly absorbent and easily soaks up liquids. The closed cell portion of the foam article acts as a waterproof layer preventing liquid from moving all the way through the thickness of the foam. After blowing the polymer melt, the extrusion product comprises a foam article with a peel layer disposed roughly in the middle of the foam. A preferred embodiment of the multi-layer article is polystyrene foam for the two outer layers and a polyethylene film as the inner peel layer.