Abstract:
A method and apparatus for inspecting a wall of a mechanical structure including obtaining an infinite response from a sample material having a front face, a thickness, and a back wall, by transmitting into a sample material an ultrasonic wave having a frequency and duration and being generated by one or more transducers, wherein the thickness of the sample material is sufficiently great that only a wave corresponding to the front face of the sample is received back; transmitting an ultrasonic wave generated by one or more transducers into the wall of a mechanical structure to be inspected at a time (T), wherein the ultrasonic wave has the same frequency and duration as the ultrasonic wave transmitted into the sample material; receiving a response signal back from the wall to be inspected; and correlating the response signal to the infinite response, thereby creating correlated data. The system can be operated remotely and wirelessly, and data can be transmitted and received via the Internet or local area network, either wireless or wired.
Abstract:
A surface acoustic wave (“SAW”) element includes a substrate which is formed of a piezoelectric material, a plurality of first electrodes which are disposed on the substrate and separated from each other, a plurality of second electrodes which are disposed on the substrate and are separated from the first electrodes and are separated from each other, and oxide films which are disposed on the respective plurality of first electrodes and the plurality of second electrodes.
Abstract:
A calibration block and method for sensitivity calibration. The calibration block has a curved calibration surface having a central axis and a surface for coupling to a transducer element of an angular scanning phased array ultrasonic testing scanner. The block is configured such that the surface positions the transducer such that its scanning axis is coaxial with the central axis of the curved calibration surface.
Abstract:
A method of controlling a function of an acoustic detector includes storing a reference power spectrum of a reference acoustic signal, the reference power spectrum being associated with a mode of operation of the acoustic detector; receiving an acoustic sound signal, the acoustic sound signal including a tone and harmonic tones; generating a real-time acoustic power spectrum of the acoustic sound signal responsive to the receiving of the acoustic sound signal; and performing the mode of operation when a comparison of the real-time acoustic power spectrum with the reference acoustic power spectrum indicates that the acoustic sound signal is a control signal.
Abstract:
A heat treatment is performed at different temperatures for a plurality of calibration-line forming optical glass samples that can be considered as having the same composition as optical glass to be measured, any one of the longitudinal wave velocity, the LSAW velocity and the shear wave velocity of the samples is measured as an acoustic property AP1, and a relationship between the fictive temperature Tf and the acoustic property AP1 is determined in the form of approximate straight line formula on the assumption that the heat treatment temperature is regarded as the fictive temperature Tf in a range where the heat treatment temperature and the acoustic property AP1 are in a linear relationship. The acoustic property AP1 of the optical glass to be measured is measured, and the fictive temperature is calculated from the measured acoustic property AP1 according to the approximate straight line formula.
Abstract:
The invention relates to a method for providing a structural condition of a structure, comprising providing an excitation wave generator; providing an excitation wave sensor; injecting an excitation burst wave into the structure using the excitation wave generator; obtaining a measured propagated excitation burst wave using the excitation wave sensor; correlating the measured propagated excitation burst wave with one of a plurality of theoretical dispersed versions of the excitation burst wave; and providing an indication of the structural condition of the structure corresponding to the correlated measured propagated excitation burst wave. The method may offer a better localization of the reflection points and thus of the potential defects present in a structure under inspection, when compared with a group velocity-based or time-of-flight (ToF) approach. The method may be particularly useful for structural health monitoring (SHM) and Non-Destructive Testing (NDT). The method may also enable determination of the mechanical properties of the structure.
Abstract:
A method for compensating for environment induced variations in structural health monitoring data is described. The method includes imparting a vibration onto a structure first location, the structure at a first temperature, receiving a comparison signal resulting from the vibration at a second location, accessing data representing a reference signal previously received at the second location, based on vibration at the first location, the reference signal received when the structure was at a second temperature, dividing the signals across multiple time windows, performing a cross correlation between the signals in each window to maximally correlate the signals within each window, performing a weighted regression on time to estimate time shift, the weights based on reference signal energy in each window, to determine a relationship between time and time shift, and using the relationship between time and time shift of the comparison signal to reduce the effects of environment on the comparison signal.
Abstract:
An engineering component with a designed defect and use of an engineering component with a designed defect to evaluate a production component are disclosed. A test component having a known defect is manufactured. This known defect is a flaw that is intentionally included in the test component. The test component is then analyzed to obtain a test profile of the defect. In addition, the engineering component to be tested is analyzed to obtain a production profile. This production profile is compared with the test profile to determine whether the engineering component has a defect that corresponds to the known defect.
Abstract:
Illustrative embodiments of systems for characterizing resonance behavior of magnetostrictive resonators are disclosed. In one illustrative embodiment, an apparatus may comprise a first channel including one or more driving coils and one or more magnetostrictive resonators, the first channel having a first impedance; a second channel having a second impedance, the second impedance differing from the first impedance by an impedance attributable to the one or more magnetostrictive resonators; a signal source configured to apply an input signal to both the first and second channels; and a signal receiver configured to generate a combined output signal in response to output signals measured from both the first and second channels.
Abstract:
An ultrasonic flaw detection is performed to a welded portion 2 of a pipe body 1, a defect detection threshold value is determined based on the signal intensity difference between the total area of the defects existing in the region of an ultrasonic beam on a welded surface and an artificial defect, and a quality control of the pipe body is performed based on the defect detection threshold value. An equivalent defect diameter is determined from the defect density on the welded surface of the welded portion of the pipe body in a pipe axis direction and the area of the ultrasonic beam on the welded surface based on the total area of the defects existing in the region of the ultrasonic beam, and the defect detection threshold value is determined based on the equivalent defect diameter and the signal intensity difference of the artificial defect.