Abstract:
A firearm is provided that includes a receiver, a stock, an elongated barrel and a muzzle. The barrel extends from the receiver to the muzzle and has a rectangular internal bore extending from the receiver to the muzzle. The internal bore has two short sides and two long sides. A plurality of teeth extends along one of the short sides within the internal bore. A disk-shaped bullet fitting within the internal bore may be fired from the firearm. A bullet case having a rectangular orifice is provided to chamber the disk-shaped bullet for propulsion through the rectangular internal bore of the firearm.
Abstract:
The invention relates to a device for producing a gun barrel, in which the barrel is formed from a pipe blank (1) in which barrel rifles (2) are formed against a mandrel (3) having grooves (2b) shaped as the rifles.
Abstract:
A rifling angle calculating method according to the present invention expands a rifling angle by combining a Fourier function and a polynomial function to take only the advantages of the two functions, and thus boundary conditions at the start and end points of the rifling angle may be faithfully satisfied, and an optimum rifling angle for minimizing the maximum rifling force may be calculated.
Abstract:
A rifling angle calculating method according to the present invention expands a rifling angle by combining a Fourier function and a polynomial function to take only the advantages of the two functions, and thus boundary conditions at the start and end points of the rifling angle may be faithfully satisfied, and an optimum rifling angle for minimizing the maximum rifling force may be calculated.
Abstract:
A revolver for firing high velocity ammunition includes a frame, a cylinder, a barrel, and a firing mechanism. The revolver may include one or more of the following, each of which is especially adapted for use in the context of firing high velocity ammunition: spacers for adjusting a barrel-cylinder gap, for eliminating broaching of the rearward surface(s) of the barrel; a forcing cone formed in the rearward opening of the barrel for accommodating deformed projectiles; a reflective surface (e.g., mirrored surface) provided on the cone and/or barrel rearward surfaces, for reducing erosion resulting from using high velocity ammunition; gain-twist rifling in the barrel for a smoother transition to full projectile velocity; a larger diameter, hardened firing pin bushing for minimizing brass flow in the rearward direction; and a front sight assembly that minimizes lateral shift or drift of the sight pin during firing.
Abstract:
A method of making a gun barrel having a breech end and a muzzle end and a bore extending between the two ends comprises applying to the outer surface of the bore a plurality of swaging dies (5), each of which carries an upstanding helical land (10). The dies are pressed simultaneously against the external surface of the gun barrel such that each land forms a helical recess (14) in the external surface and crystalline deformation to the material of the barrel wall immediately below the external helical recess. The distortion of the external surface results simultaneously in the creation of a plurality of smooth helical ridges (16) on the surface of the bore.
Abstract:
A revolver for firing high velocity ammunition includes a frame, a cylinder, a barrel, and a firing mechanism. The revolver may include one or more of the following, each of which is especially adapted for use in the context of firing high velocity ammunition: spacers for adjusting a barrel-cylinder gap, for eliminating broaching of the rearward surface(s) of the barrel; a forcing cone formed in the rearward opening of the barrel for accommodating deformed projectiles; a reflective surface (e.g., mirrored surface) provided on the cone and/or barrel rearward surfaces, for reducing erosion resulting from using high velocity ammunition; gain-twist rifling in the barrel for a smoother transition to full projectile velocity; a larger diameter, hardened firing pin bushing for minimizing brass flow in the rearward direction; and a front sight assembly that minimizes lateral shift or drift of the sight pin during firing.
Abstract:
A rifle barrel for realigning a projectile which is propelled through the barrel by gas pressure, the barrel comprising: a bore having a bore diameter through which a projectile may travel; rifling ridges within the bore; and at least one bore expansion chamber in the bore, wherein a diameter of the at least one bore expansion chamber is greater than the bore diameter, wherein a length of the at least one expansion chamber is smaller than an overall length of the projectile and greater than a contact length of the projectile. A process for projecting a projectile from a rifle barrel, the process comprising: increasing gas pressure behind the projectile in the rifle barrel, whereby the projectile is propelled through the rifle barrel; and passing a burst of gas around the projectile, whereby the projectile is aligned coaxially in the rifle barrel.
Abstract:
An apparatus and method for firing a projectile in which one part of the projectile rotates and the other part of the projectile does not rotate where is it used for delivering a line. The projectile firing apparatus includes a projectile having a part that rotates and a part that does not rotate, and further a barrel with a bore having spiraled grooves and at least two channels for the nonrotating part of the projectile to travel through when the projectile is fired. A line dragging system is mounted on the front of the barrel and engages to the nonrotating part of the projectile. The line dragging system is made of a wire frame including a cylindrical portion, engaging members, frame sides, and engaging locks. Upon firing the projectile, the rotating part moves through the bore of the barrel while the nonrotating part moves through the channels of the barrel. The nonrotating part of the projectile engages the line dragging system on its engaging members after exit of the barrel and delivers the line in flight. The rotational motion of the projectile allows the projectile to be stabilized in flight for better precision and range, while the nonrotational motion of the projectile allows a balanced and untangled line to be delivered to its destination.
Abstract:
A shotgun having identification grooves within at least part of the barrel, in a unique pattern which corresponds to the a recorded serial number of the shotgun (or of the barrel). The grooves are dimensioned to mark the polymer wadding which is normally included in a shotshell. The ejected wadding is thereby marked with identification data which can be used later to identify the gun.