Abstract:
A system for controlling propeller blade pitch in a turboshaft engine, including: a first track connected to a propeller blade, of which the rotation provides for the setting of the incidence of this blade; a second track; a member actuating the first track, arranged between the first and second tracks, and having a recessed angular portion; and at least one locking member provided between the first and second tracks, housed in the recessed angular portion and in the notch. The locking member can occupy a normal over-center position rendering the first and second tracks integral in rotation, and a release position authorizing the displacement in rotation of a unit including the first track, the locking member, and the actuating member.
Abstract:
A generator-steam turbine-turbocompressor-string is provided. The generator-stream turbine-turbocompressor-string includes a generator with variable frequency, a steam turbine and a turbocompressor which can be driven by the generator and/or the steam turbine. The generator and the steam turbine are coupled together to a shafting, wherein the generator may be electrically coupled to an electrical power supply system for power supply feeding and the steam turbine may be connected to a live steam feeding device for the feeding of live steam to the steam turbine, such that the generator-steam turbine-turbocompressor-string has a rotational speed which is controllable by varying the power supply feeding and/or by the live steam feeding.
Abstract:
One embodiment of the present invention is a unique gas turbine engine. Another embodiment is a unique variable cycle gas turbine engine. Another embodiment is a unique adaptive fan system for a variable cycle turbofan engine having at least one turbine. Another embodiment is a unique method for operating a variable cycle gas turbine engine. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for gas turbine engines and related systems.
Abstract:
An exemplary turbomachine clutch assembly includes a clutch that moves from a first position to a second position in response to rotation of a turbomachine fan at a speed greater than a threshold speed. The clutch permits rotation of the turbomachine fan in a first direction whether the clutch is in the first position or the second position. The clutch limits rotation of the turbomachine fan in an opposite, second direction when the clutch is in the first position.
Abstract:
Systems and methods for changing a speed ratio between a compressor boost stage (12) and at least one power turbine (16) of a gas turbine engine (10) are described. Such a system may comprise a coupling device (20) configured to selectively transmit energy from the at least one power turbine (16) to the boost stage (12) according to at least a first speed ratio and a second speed ratio. The system may also comprise an auxiliary power device (22, 26) configured to cause a rotational speed of the boost stage (12) to change from a first speed corresponding substantially to the first speed ratio to a second speed corresponding substantially to the second speed ratio when the boost stage (12) is decoupled from the at least one power turbine (16).
Abstract:
Systems, devices and methods according to these exemplary embodiments provide couplings or interfaces usable, for example, in the high speed balance testing of rotors are provided. A coupling includes a main body portion having an extended thin portion therein which is configured to fit a shaft of the balancing machine and an extended insert portion which is configured to fit an opening in the rotor. A plurality of connection elements is disposed in holes in the main body portion of the coupling and a ring is disposed over the extended insert and proximate exits of the holes in the main body portion.
Abstract:
A compressor of a gas turbine engine may have a bypass that routes a compressed air flow from within the compressor and directs the compressed air flow to a combustor. The bypass may have an inlet positioned just ahead of a downstream stage of the compressor and an outlet positioned to route the compressed air flow from the bypass to a diffuser or directly to a combustor. A valve may be used within the bypass and may be located near the inlet, near the outlet, or both. The valve may have the form of an annular sleeve in some embodiments and may be actuated with an actuator. The various arrangements allow for a compressor having a variable compression ratio.
Abstract:
In order to provide a high electric power for an aircraft via a generator driven by the engine, an additional free turbine is included in the hot-gas flow of the engine, which—equipped with generator-starter magnets (9) and surrounded by annularly arranged generator-starter coils (12)—forms a generator-starter turbine (5) and is connected to the high-pressure shaft (1) via an overrunning clutch (15), and hence, is also used for starting the engine.
Abstract:
An adaptive cycle gas turbine engine is disclosed having a number of features. A fan arrangement is provided having counter-rotating fan stages, one fan stage is operable to be clutched and decoupled from the other stage. A high pressure compressor bypass is also provided. A clutch is provided to at least partially drive an intermediate pressure compressor with a high pressure turbine when the high pressure compressor is bypassed. A partial bypass of the high pressure turbine may be provided.
Abstract:
An air turbine starter for starting an engine includes a housing, and a flow path communicating a flow of gas therethrough; a turbine member; a clutch; and a decoupler device at least partially housed within the output member of the clutch. The decoupler device includes a first shaft portion coupled to and rotating with the output member and a second shaft portion coupled to and rotating with the engine. The first and second shaft portions are axially aligned and configured to engage each another for rotation in a first direction and to separate from each other in a second direction to decouple the output member of the clutch from the engine. The starter further includes a bearing between the inner surface of the output member and the second shaft portion for reducing friction between the second shaft portion and the inner surface of the output member when the first and second shaft portions are decoupled.