Abstract:
The present invention is directed to using methyl acetate from a vinyl acetate-based or a vinyl- or ethylene-alcohol based polymer or copolymer process directly for use in a methanol carbonylation production process to produce acetic acid, acetic anhydride, or a coproduction of each. Methyl acetate is a by-product of commercial polyvinyl-alcohol or alkene vinyl alcohol copolymer-based processes. Generally, this material is processed to recover methanol and acetic acid. Discussed herein is a cost-saving scheme to by-pass the methyl acetate processing at production or plant facilities and utilize the methyl acetate in an integrated methanol carbonylation unit. The scheme discussed eliminates an expensive hydrolysis step often associated with the polymer process.
Abstract:
The present invention is directed to using methyl acetate from a vinyl acetate-based or a vinyl-or ethylene-alcohol based polymer or copolymer process directly for use in a methanol carbonylation production process to produce acetic acid, acetic anhydride, or a coproduction of each. Methyl acetate is a by-product of commercial polyvinyl-alcohol or alkene vinyl alcohol copolymer-based processes. Generally, this material is processed to recover methanol and acetic acid. Discussed herein is a cost-saving scheme to by-pass the methyl acetate processing at production or plant facilities and utilize the methyl acetate in an integrated methanol carbonylation unit. The scheme discussed eliminates an expensive hydrolysis step often associated with the polymer process.
Abstract:
Disclosed is a process for the production of acetic acid or mixtures of acetic acid and acetic anhydride in a carbonylation process wherein a mixture comprising methyl acetate and/or dimethyl ether and methyl iodide is contacting in the liquid phase with carbon monoxide in the presence of a carbonylation catalyst at elevated pressures and temperatures. Methanol, water, or a mixture thereof is added to an acetic anhydride-containing stream within a flash evaporation zone to convert some or all of the acetic anhydride to acetic acid and optionally methyl acetate and to provide heat for the evaporation of a portion of the product effluent produced by the carbonylation process.
Abstract:
A process for the carbonylation of an alcohol and/or reactive derivative thereof, in which one or more reaction zone feed streams are fed to a reaction zone in which exothermic carbonylation takes place to produce one or more product streams. Heat from at least a portion of the one or more product streams is fed to a first heat-exchange stream, such as a supply of pressurised steam. The process is characterised by heat from a second heat-exchange stream, having a temperature lower than that of the one or more product streams, being transferred to a reaction zone feed stream, so that the one or more product streams comprise heat originating from the second heat-exchange stream and heat generated by the exothermic carbonylation reaction. Thus, heat originating from the second heat-exchange stream can be transferred to the first heat-exchange stream, resulting in reduced heat loss and greater process efficiency.
Abstract:
Disclosed is a carbonylation process wherein a mixture of a dialkyl carbonate and halide compound is contacted with carbon monoxide in the presence of a metal selected from Group VIII of the Periodic Table to co-produce carbon dioxide and a carbonyl compound selected from a carboxylic acid, an alkyl carboxylate ester, a carboxylic acid anhydride or a mixture of any two or more thereof. The carbon dioxide co-product of the process may be recovered, and sold or further reacted with a suitable substrate to produce useful chemicals such as urea or cyclic carbonates.
Abstract:
The present invention provides acetic anhydride, a method of purifying crude acetic anhydride, and a method of producing polyoxytetramethylene glycol using acetic anhydride.A method of producing polyoxytetramethylene glycol by ring-opening-polymerizing tetrahydrofuran in the presence of acetic anhydride and an acid catalyst, wherein said ring-opening polymerization is conducted using acetic anhydride having a diketene concentration of 10 ppm or less to produce polyoxytetramethylene glycol.
Abstract:
Disclosed is a continuous process wherein carbon monoxide, a carbonylatable reactant, and a halide in the gas phase are contacted with a non-volatile catalyst solution comprising an ionic liquid and a Group VIII metal to produce a carbonylation product in the gas phase. The process is useful for the continuous preparation of acetic acid by the carbonylation of methanol.
Abstract:
An integrated process for carrying out the production of Fischer-Tropsch products and acetic acid made using the methanol and carbonylation route which utilizes the hydrogen recovered from the methanol production to upgrade the Fischer-Tropsch products.
Abstract:
A carboxylic acid anhydride such as acetic anhydride, is prepared from a carboxylate ester or a hydrocarbyl ether in carbonylation processes comprising the use of a halide, carbon monoxide and a Group VIII noble metal in the presence of promoters comprising at least one metal of Groups IVB, VB, and VIB or a non-noble metal of Group VIII, or their compounds and an organo-nitrogen compound or an organo-phosphorus compound wherein the nitrogen and phosphorus are trivalent.
Abstract:
1. A PROCESS FOR PREPARING A CARBOXYLIC ACID OR ESTER THEREOF WHICH COMPRISES REACTING, AT A TEMPERATURE OF 50-150*C., AN OLEFINIC UNSATURATED COMPOUND AND CARBON MONOXIDE WITH WATER, ALCOHOL, PHENOL OR MIXTURE THEREOF, IN THE PRESENCE OF HYDROGEN GAS IN AN AMOUNT OF 0.02 10 MOLAR RATIO HYDROGEN TO CARBON MONOXIDE AND A CATALYST HAVING THE GENERAL FORMULA:
LMPDXN
WHEREIN L REPRESENTS A NEUTRAL LIGAND SELECTED FROM THE GROUP CONSISTING OF ARYL OR ARYL AND ALKYL SUBSTITUTED PHOSPHINES, ARSINES, PHOSPHITES, AND STIBINES, AMINES, PYRIDINES, PIPERIDINES, PHENANTHROLINES, PYRROLIDONES AND DIPYRIDYLS, NITRILES, UNSATURATED HYDROCARBONS AND AMMONIA. X REPRESENTS IODINE OR BROMINE, AND M REPRESENTS AN INTEGER OF FROM 1 TO 4, N REPRESENTS AN INTEGER OF FROM TO 2, AND M+N IS AN INTEGER OF FROM 2 TO 6.