Abstract:
An austenitic stainless steel foil 2 with a thickness equal to or less than 300 μm is disposed to face a punch 12, and the stainless steel foil 2 is subjected to drawing in a state in which an annular region 2a of the stainless steel foil 2 that is in contact with a shoulder portion 12d of the punch 12 is set to a temperature up to 30° C. and an external region 2b outside the annular region 2a is set to a temperature of from 40° C. to 100° C.
Abstract:
A method of manufacturing a pipe with different diameters along a longitudinal direction that has a small diameter portion, a large diameter portion, and a diameter-changing portion provided between the small diameter portion and the large diameter portion and is formed by press forming a blank made of a metal sheet includes press forming the blank with a U-shape forming die into a U-shaped formed part and press forming the U-shaped formed part with an O-shape forming die set into a circular cross-section formed part. A length of a vertical wall of the U-shape forming die is longer than a length of a vertical wall portion of the U-shaped formed part. In the O-shape forming die set, a die mating line is inclined downwardly, and a ratio t/D of a sheet thickness t of the blank to a diameter D, which represents a diameter of a portion of the O-shape forming die set corresponding to the small diameter portion and a diameter of a portion of the O-shape forming die set corresponding to the large diameter portion, is 0.010≦t/D≦0.080.
Abstract:
Provided is a plastic working method of steel including austenite, the method including: analyzing a strain ratio βx of an estimated breaking point which is specified during plastic deformation of the steel; heating a steel such that a local temperature Tlocal is within a temperature range indicated by the following expression 1, when Tβx represents a strain-induced-transformation-maximum-ductility-temperature in the unit of ° C. for the strain ratio βx, σLβx represents the standard deviation of a fitted curve of critical equivalent strain which depends on the strain ratio βx on a lower temperature side than Tβx, σHβx represents the standard deviation of a fitted curve of critical equivalent strain which depends on the strain ratio βx on a higher temperature side than Tβx, and Tlocal represents a local temperature in the unit of ° C. of the estimated breaking point; and plastically deforming the steel after heating: Tβx−2×σLβx≦Tlocal≦Tβx+1.25×σHβx (Expression 1).
Abstract:
A hot clamping method includes: blanking to cut a material; cold-working to cool down the cut material to produce a product having a shape of a completed product; heating the cooled product in a heating furnace; and clamping cooling to set the heated product in a clamp to clamp it so that it is in contact with the clamp to be cooled down.
Abstract:
A shaping apparatus for shaping a workpiece. The apparatus comprises first and second pairs of shaping members and a spacer located between the first and second pairs of shaping members. The first pair of shaping members comprises a material having a first linear coefficient of thermal expansion, and the second pair of shaping members comprises a material having a third linear coefficient of thermal expansion. The first linear coefficient of thermal expansion is higher than the second linear coefficient of thermal expansion such that on heating of the apparatus, thermal expansion of the shaping members causes the first pair of shaping members to expand outwardly, and the second pair of shaping members to expand inwardly.
Abstract:
The invention relates to a bending die (3), particularly a V-shaped die (13), comprising a tool base body (7) with a contact surface (10) for contacting the workpiece (2) to be bent by a bending punch (5), a groove-shaped bending recess (11) in the contact surface (10) and at least one beam exit opening (17) in the bending recess (11) and extending along thereof, which is configured to discharge high-energy radiation (18) onto a workpiece (2) bearing against the contact surface (10) in order to heat the deformation zone of the workpiece (2). An arrangement of diode laser bars (20) is fixed in the interior of the tool base body (7) for producing the radiation (18). Said diode laser bars (20) are arranged at least approximately uniformly along the longitudinal direction (27) of the bending recess (11) behind the beam exit opening (17) in the tool base body (7).
Abstract:
The invention relates to a method for bending a flat workpiece (2), comprising the discharge of high-energy radiation (19) in the form of at least one planar fanned beam (24) from a bending recess (12) of a die arrangement (3) having a bending die (7) onto a workpiece (2) bearing against a contact surface (11) of the bending die (7) for the local heating thereof before and/or during a bending process. The one or more planar fanned beams (24; 24a. 24b, . . . ) are produced by a number of optionally activatable radiation sources (22a, 22b, . . . ) which are arranged within the die arrangement (3) along the bending recess (12) or are caused by the distribution of a concentrated radiation beam (40) that is introduced from a radiation source (39) outside the bending dies (7a, 7b, . . . ) via a number of beam affecting arrangements (23a, 23b, . . . ) within the bending dies (7a, 7b, . . . ) and the exiting radiation (19) is thereby adjusted to the bending length (21) of the workpiece to be bent (2) via the number of planar fanned beams (24, 24a, 24b, . . . ).
Abstract:
A system for producing precision magnetic coil windings is provided. The system includes a wire disposing assembly having a support, an axial traverser sub-assembly, and a support arm. The support is configured to receive a plurality of turns of a wire. The axial traverser sub-assembly is operatively coupled to the support. The support arm includes a wire disposing device. The system further includes a linear stage, a monitoring unit, a feedback unit, and a controller unit. The linear stage is operatively coupled to the support arm. Moreover, the controller unit is configured to axially position an incoming portion of the wire and provide reference trajectories for tracking.
Abstract:
An Al-plated steel sheet includes: a steel sheet; an Al plating layer which is formed on one surface or both surfaces of the steel sheet and contains at least 85% or more of Al by mass %; and a surface coating layer which is laminated on the surface of the Al plating layer and contains ZnO and one or more lubricity improving compounds.
Abstract:
There is provided a hot press-formed product, including a thin steel sheet formed by a hot press-forming method, and having a metallic structure that contains martensite at 80% to 97% by area and retained austenite at 3% to 20% by area, the remainder structure of which is at 5% by area or lower, whereby balance between strength and elongation can be controlled in a proper range and high ductility can be achieved.